High Sensitivity Online Sensor for BTEX in Ambient Air Based on Multiphoton Electron Extraction Spectroscopy
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Signal Acquisition and Data Processing
2.3. Analytes
2.4. Sample Preparation
3. Results and Discussion
3.1. Spectra of Ambient Air
3.2. BTEX Identification
3.3. BTEX Quantification
3.4. Additivity
3.5. Online Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- David, E.; Niculescu, V.C. Volatile Organic Compounds (VOCs) as Environmental Pollutants: Occurrence and Mitigation Using Nanomaterials. Int. J. Environ. Res. Public Health 2021, 18, 13147. [Google Scholar] [CrossRef]
- Initial List of Hazardous Air Pollutants with Modifications|US EPA. Available online: https://www.epa.gov/haps/initial-list-hazardous-air-pollutants-modifications (accessed on 1 June 2025).
- Dehghani, M.; Fazlzadeh, M.; Sorooshian, A.; Tabatabaee, H.R.; Miri, M.; Baghani, A.N.; Delikhoon, M.; Mahvi, A.H.; Rashidi, M. Characteristics and Health Effects of BTEX in a Hot Spot for Urban Pollution. Ecotoxicol. Environ. Saf. 2018, 155, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Yuan, Z.; Yu, Z.; Xue-song, F. BTEX in the Environment: An Update on Sources, Fate, Distribution, Pretreatment, Analysis, and Removal Techniques. Chem. Eng. J. 2022, 435, 134825. [Google Scholar] [CrossRef]
- Zahed, M.A.; Salehi, S.; Khoei, M.A.; Esmaeili, P.; Mohajeri, L. Risk Assessment of Benzene, Toluene, Ethyl Benzene, and Xylene (BTEX) in the Atmospheric Air around the World: A Review. Toxicol. Vitr. 2024, 98, 105825. [Google Scholar] [CrossRef]
- Garg, A.; Kashtan, Y.; Nicholson, M.; Finnegan, C.J.; Lebel, E.D.; Michanowicz, D.R.; Shonkoff, S.B.C.; Nadeau, K.C.; Jackson, R.B. Exposure and Health Risks of Benzene from Combustion by Gas Stoves: A Modelling Approach in U.S. Homes. J. Hazard. Mater. 2025, 492, 137986. [Google Scholar] [CrossRef]
- Ghasemi, R.; Saranjam, B.; Zarei, A.; Babaei, A.; Ghaffari, H.R.; Fazlzadeh, M. Assessment of Health Risks of University Professors through Exposure to BTEX Compounds from White Board Markers. Sci. Rep. 2025, 15, 8435. [Google Scholar] [CrossRef]
- Bolden, A.L.; Kwiatkowski, C.F.; Colborn, T. New Look at BTEX: Are Ambient Levels a Problem. Environ. Sci. Technol. 2015, 49, 5261–5276. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Zaitsev, A.A. Reviews and Syntheses: VOC Emissions from Soil Cover in Boreal and Temperate Natural Ecosystems of the Northern Hemisphere. Biogeosciences 2022, 19, 4715–4746. [Google Scholar] [CrossRef]
- Bahadar, H.; Mostafalou, S.; Abdollahi, M. Current Understandings and Perspectives on Non-Cancer Health Effects of Benzene: A Global Concern. Toxicol. Appl. Pharmacol. 2014, 276, 83–94. [Google Scholar] [CrossRef]
- BS EN 14662-3:2015 Ambient Air; Standard Method for the Measurement of Benzene Concentrations Automated Pumped Sampling with in Situ Gas Chromatography. Available online: https://www.en-standard.eu/bs-en-14662-3-2015-ambient-air-standard-method-for-the-measurement-of-benzene-concentrations-automated-pumped-sampling-with-in-situ-gas-chromatography/ (accessed on 1 June 2025).
- Almog, S.; Trachtman, A.; Nezer, S.; Crescenti, E. Report of the Committee for Determining Environmental Reference Values for Chemical Pollutants in the Air. 2006. Available online: https://www.gov.il/BlobFolder/reports/chemical-pollutants/he/air_quality_chemical-pollutants.pdf (accessed on 18 June 2025).
- Yu, K.; Xiong, Y.; Chen, R.; Cai, J.; Huang, Y.; Kan, H. Long-Term Exposure to Low-Level Ambient BTEX and Site-Specific Cancer Risk: A National Cohort Study in the UK Biobank. Eco-Environ. Health 2025, 4, 100146. [Google Scholar] [CrossRef]
- Sekar, A.; Varghese, G.K.; Ravi Varma, M.K. Analysis of Benzene Air Quality Standards, Monitoring Methods and Concentrations in Indoor and Outdoor Environment. Heliyon 2019, 5, e02918. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, X.; Dufresne, M.; Wang, T.; Wu, L.; Lara, R.; Seco, R.; Monge, M.; Yáñez-Serrano, A.M.; Gohy, M.; et al. Measurement Report: Exploring the Variations in Ambient BTEX in Urban Europe and Their Environmental Health Implications. Atmos. Chem. Phys. 2025, 25, 625–638. [Google Scholar] [CrossRef]
- Allouch, A.; Le Calvé, S.; Serra, C.A. Portable, Miniature, Fast and High Sensitive Real-Time Analyzers: BTEX Detection. Sens. Actuators B Chem. 2013, 182, 446–452. [Google Scholar] [CrossRef]
- Dunker, T.; Ferber, A.M.; Sagberg, H.; Hestnes Bakke, K.A. Critical Review of Potential Technologies for a Weara-ble Benzene Sensor System. Sensors Actuators Rep. 2024, 8, 100210. [Google Scholar] [CrossRef]
- Ragbir, P.; Kaduwela, A.; Passovoy, D.; Amin, P.; Ye, S.; Wallis, C.; Alaimo, C.; Young, T.; Kong, Z. UAV-Based Wildland Fire Air Toxics Data Collection and Analysis. Sensors 2023, 23, 3561. [Google Scholar] [CrossRef]
- Mhanna, M.; Sy, M.; Arfaj, A.; Llamas, J.; Farooq, A. Highly Sensitive and Selective Laser-Based BTEX Sensor for Occupational and Environmental Monitoring. Appl Opt. 2024, 63, 2892. [Google Scholar] [CrossRef]
- Khan, S.; Newport, D.; Le Calvé, S. Low-Volume PEEK Gas Cell for BTEX Detection Using Portable Deep-UV Ab-sorption Spectrophotometry. Acta Part A: Mol. Biomol. Spectrosc. 2020, 243, 118727. [Google Scholar] [CrossRef]
- Filippov, T.; Vervitski, E.; Kofler, H.; Birkan, L.; Levy, S.; Zimmerman, S.; Bulatov, V.; Schechter, I.; Schuetz, R. Sub-PPB Detection with Gas-Phase Multiphoton Electron Extraction Spectroscopy under Ambient Conditions. Sensors 2024, 24, 2040. [Google Scholar] [CrossRef]
- Dey, D.; Woodhouse, J.L.; Taylor, M.P.; Fielding, H.H.; Worth, G.A. On the Multiphoton Ionisation Photoelectron Spectra of Phenol. Phys. Chem. Chem. Phys. 2024, 26, 3451–3461. [Google Scholar] [CrossRef]
- Kheifets, A.S. Resonant Photoionization and Time Delay. J. Phys. B At. Mol. Opt. Phys. 2025, 58, 072001. [Google Scholar] [CrossRef]
- Imasaka, T.; Imasaka, T. Femtosecond Ionization Mass Spectrometry for Chromatographic Detection. J. Chromatogr. A 2021, 1642, 462023. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Bulatov, V.; Vinerot, N.; Schechter, I. Multiphoton Ionization Spectroscopy as a Diagnostic Technique of Surfaces Under Ambient Conditions. Anal. Chem. 2010, 82, 3454–3456. [Google Scholar] [CrossRef]
- Vinerot, N.; Chen, Y.; Bulatov, V.; Gridin, V.V.; Fun-Young, V.; Schechter, I. Spectral Characterization of Surfaces Using Laser Multi-Photon Ionization. Opt. Mater. 2011, 34, 329–335. [Google Scholar] [CrossRef]
- Etscheidt, F.; Rüger, C.P.; Schwarz, C.; Tiemann, O.; Neumann, A.; Hansen, H.J.; Streibel, T.; Ehlert, S.; Zimmermann, R. Atmospheric Pressure Laser Ionization Mass Spectrometry with Tunable UV Wavelength Utilizing an Optical Parametric Oscillator. Anal. Chem. 2025, 97, 676–685. [Google Scholar] [CrossRef]
- Tang, S.; Vinerot, N.; Fisher, D.; Bulatov, V.; Yavetz-Chen, Y.; Schechter, I. Detection and Mapping of Trace Explosives on Surfaces under Ambient Conditions Using Multiphoton Electron Extraction Spectroscopy (MEES). Talanta 2016, 155, 235–244. [Google Scholar] [CrossRef]
- Fisher, D.; Bulatov, V.; Schechter, I. Authentication and Testing of Banknotes Using Laser Multiphoton Electron Extraction Spectroscopy (MEES). Appl. Sci. 2021, 11, 10465. [Google Scholar] [CrossRef]
- Fisher, D.; Bulatov, V.; Schechter, I. Application of Multiphoton Electron Extraction Spectroscopy (MEES) to Printed Document Forensics. Talanta Open 2022, 5, 100094. [Google Scholar] [CrossRef]
- Tang, S.; Vinerot, N.; Bulatov, V.; Yavetz-Chen, Y.; Schechter, I. Multiphoton Electron Extraction Spectroscopy and Its Comparison with Other Spectroscopies for Direct Detection of Solids under Ambient Conditions. Anal. Bioanal. Chem. 2016, 408, 8037–8051. [Google Scholar] [CrossRef]
- Tumbiolo, S.; Vincent, L.; Gal, J.-F.; Maria, P.-C. Thermogravimetric Calibration of Permeation Tubes Used for the Preparation of Gas Standards for Air Pollution Analysis. Analyst 2005, 130, 1369. [Google Scholar] [CrossRef]
- Wang, M.; Varma, R.; Venables, D.S.; Zhou, W.; Chen, J. A Demonstration of Broadband Cavity-Enhanced Absorption Spectroscopy at Deep-Ultraviolet Wavelengths: Application to Sensitive Real-Time Detection of the Aromatic Pollutants Benzene, Toluene, and Xylene. Anal. Chem. 2022, 94, 4286–4293. [Google Scholar] [CrossRef]
- Etzkorn, T.; Klotz, B.; Sørensen, S.; Patroescu, I.V.; Barnes, I.; Becker, K.H.; Platt, U. Gas-Phase Absorption Cross Sections of 24 Monocyclic Aromatic Hydrocarbons in the UV and IR Spectral Ranges. Atmos. Environ. 1999, 33, 525. [Google Scholar] [CrossRef]
- Fally, S.; Carleer, M.; Vandaele, A.C. UV Fourier Transform Absorption Cross Sections of Benzene, Toluene, Meta-, Ortho-, and Para-Xylene. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 766. [Google Scholar] [CrossRef]
- Keller-Rudek, H.; Moortgat, G.K.; Sander, R.; Sörensen, R. The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest. Available online: https://uv-vis-spectral-atlas-mainz.org/uvvis/cross_sections/Aromatic%20compounds/Alkyl-,vinylbenzenes/ (accessed on 6 July 2025).
- Koban, W.; Koch, J.D.; Hanson, R.K.; Schulz, C. Absorption and Fluorescence of Toluene Vapor at Elevated Temperatures. Phys. Chem. Chem. Phys. 2004, 6, 2940. [Google Scholar] [CrossRef]
- Ginsburg, N.; Robertson, W.W.; Matsen, F.A. The Near Ultraviolet Absorption Spectrum of Toluene Vapor. J. Chem. Phys. 1946, 14, 511–517. [Google Scholar] [CrossRef]
- Burton, C.S.; Noyes, W.A. Electronic Energy Relaxation in Toluene Vapor. J. Chem. Phys. 1968, 49, 1705–1714. [Google Scholar] [CrossRef]
- Heise, H.M. Contribution to the statistical definition of the limits of reliable assay measurement. Z. Anal. Chem. 1986, 323, 368–370. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharon, U.H.; Birkan, L.; Bulatov, V.; Schuetz, R.; Filippov, T.; Schechter, I. High Sensitivity Online Sensor for BTEX in Ambient Air Based on Multiphoton Electron Extraction Spectroscopy. Sensors 2025, 25, 4268. https://doi.org/10.3390/s25144268
Sharon UH, Birkan L, Bulatov V, Schuetz R, Filippov T, Schechter I. High Sensitivity Online Sensor for BTEX in Ambient Air Based on Multiphoton Electron Extraction Spectroscopy. Sensors. 2025; 25(14):4268. https://doi.org/10.3390/s25144268
Chicago/Turabian StyleSharon, Uriah H., Lea Birkan, Valery Bulatov, Roman Schuetz, Tikhon Filippov, and Israel Schechter. 2025. "High Sensitivity Online Sensor for BTEX in Ambient Air Based on Multiphoton Electron Extraction Spectroscopy" Sensors 25, no. 14: 4268. https://doi.org/10.3390/s25144268
APA StyleSharon, U. H., Birkan, L., Bulatov, V., Schuetz, R., Filippov, T., & Schechter, I. (2025). High Sensitivity Online Sensor for BTEX in Ambient Air Based on Multiphoton Electron Extraction Spectroscopy. Sensors, 25(14), 4268. https://doi.org/10.3390/s25144268