Integrated NV Center-Based Temperature Sensor for Internal Thermal Monitoring in Optical Waveguides
Abstract
1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NV | Nitrogen-vacancy |
FsLDW | Femtosecond laser direct writing |
ODMR | Optically detected magnetic resonance |
References
- Li, Y.; Tian, Y.; Dong, B.; Liu, Y.; Feng, Z.; Zhang, J.; Bing, X.; Nan, C.; Luo, Y. Demonstration of 123.72-Gbps D-band fiber–THz–fiber system based on full photonic conversion technology with broadband optoelectronic devices. Chin. Opt. Lett. 2025, 23, 053901. [Google Scholar] [CrossRef]
- Kareem, F.Q.; Zeebaree, S.R.; Dino, H.I.; Sadeeq, M.A.; Rashid, Z.N.; Hasan, D.A.; Sharif, K.H. A survey of optical fiber communications: Challenges and processing time influences. Asian J. Res. Comput. Sci. 2021, 7, 48–58. [Google Scholar] [CrossRef]
- Cristiano, P.; Ivo, S. Optical Fiber Sensors and Sensing Networks: Overview of the Main Principles and Applications. Sensors 2022, 22, 7554. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Zhou, X.; Zhang, Y.; Chen, N.; Wang, S.; Zhang, S.; Zhao, Y. Optical fiber sensors for glucose concentration measurement: A review. Opt. Laser Technol. 2021, 139, 106981. [Google Scholar] [CrossRef]
- Yang, D.; Tian, B.; Qu, Q.; Li, H.; Zhao, X.; Chen, S.; Wei, C. Darboux-dressing transformation, semi-rational solutions, breathers and modulation instability for the cubic-quintic nonlinear Schrödinger system with variable coefficients in a non-Kerr medium, twin-core nonlinear optical fiber or waveguide. Phys. Scripta 2021, 96, 045210. [Google Scholar] [CrossRef]
- Tan, D.T.; Ng, D.K.T.; Choi, J.W.; Sahin, E.; Sohn, B.U.; Chen, G.F.R.; Xing, P.; Gao, H.; Cao, Y. Nonlinear optics in ultra-silicon-rich nitride devices: Recent developments and future outlook. Adv. Phys. X 2021, 6, 1905544. [Google Scholar] [CrossRef]
- Zhou, L.; Qin, X.; Di, Y.; Lou, H.; Zhang, J.; Deng, Z.; Gu, C.; Luo, D.; Li, W. Frequency comb with a spectral range of 0.4–5.2 μm based on a compact all-fiber laser and LiNbO3 waveguide. Opt. Lett. 2023, 48, 4673–4676. [Google Scholar] [CrossRef]
- Hong, S.; Zhang, L.; Wang, Y.; Zhang, M.; Xie, Y.; Dai, D. Ultralow-loss compact silicon photonic waveguide spirals and delay lines. Photon. Res. 2022, 10, 1–7. [Google Scholar] [CrossRef]
- Sun, X.; Sun, S.; Romero, C.; Vázquez de Aldana, J.R.; Liu, F.; Jia, Y.; Chen, F. Femtosecond laser direct writing of depressed cladding waveguides in Nd:YAG with “ear-like” structures: Fabrication and laser generation. Opt. Express 2021, 29, 4296–4307. [Google Scholar] [CrossRef]
- Baiocco, D.; Lopez-Quintas, I.; Vázquez de Aldana, J.R.; Tonelli, M. and Tredicucci, A. High efficiency diode-pumped Pr: LiLuF4 visible lasers in femtosecond-laser-written waveguides. J. Opt. Express 2024, 32, 9767–9776. [Google Scholar] [CrossRef]
- Glass, A.J.; Guenther, A.H. Laser Induced Damage of Optical Elements—A Status Report. Appl. Opt. 1973, 12, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Bravil, M.B.; Safari, E. Thermal and stress analyses in an end-pumped Nd:YAG slab laser using finite element method. J. Mech. Sci. Technol. 2014, 28, 3231–3236. [Google Scholar] [CrossRef]
- He, R.; Vázquez de Aldana, J.R.; Pedrola, G.L.; Chen, F.; Jaque, D. All-optical thermal microscopy of laser-excited waveguides. Opt. Lett. 2016, 41, 2061–2064. [Google Scholar] [CrossRef]
- He, R.; Vázquez de Aldana, J.R.; Pedrola, G.L.; Chen, F.; Jaque, D. Two-photon luminescence thermometry: Towards 3D high-resolution thermal imaging of waveguides. Opt. Express 2016, 24, 16156–16166. [Google Scholar] [CrossRef]
- Wolfowicz, G.; Heremans, F.J.; Anderson, C.P.; Kanai, S.; Seo, H.; Gali, A.; Galli, G.; Awschalom, D.D. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 2021, 6, 906–925. [Google Scholar] [CrossRef]
- Soleymanand, C.L.R.; Kohandel, M.; Cappellaro, P. SARS-CoV-2 Quantum Sensor Based on Nitrogen-Vacancy Centers in Diamond. Nano Lett. 2022, 22, 43–49. [Google Scholar]
- Barry, J.F.; Steinecker, M.H.; Alsid, S.T.; Majumder, J.; Pham, L.M.; O’Keeffe1, M.F.; Braje, D.A. Sensitive ac and dc magnetometry with nitrogen-vacancy-center ensembles in diamond. Phys. Rev. Appl. 2024, 22, 044069. [Google Scholar] [CrossRef]
- Fujiwara, M.; Shikano, Y. Diamond quantum thermometry: From foundations to applications. Nanotechnology 2021, 32, 482002. [Google Scholar] [CrossRef]
- Choi, J.; Zhou, H.; Landig, R.; Wu, H.; Yu, X.; Von Stetina, S.E.; Kucsko, G.; Mango, S.E.; Needleman, D.J.; Samuel, A.D.T.; et al. Probing and manipulating embryogenesis via nanoscale thermometry and temperature control. Proc. Natl. Acad. Sci. USA 2020, 117, 14636–14641. [Google Scholar] [CrossRef]
- Kukura, P.; Ewers, H.; Müller, C.; Renn, A.; Helenius, A.; Sandoghdar, V. High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 2009, 6, 923–927. [Google Scholar] [CrossRef]
- Igarashi, R.; Sugi, T.; Sotoma, S.; Genjo, T.; Kumiya, Y.; Walinda, E.; Ueno, H.; Ikeda, K.; Sumiya, H.; Tochio, H.; et al. Tracking the 3D rotational dynamics in nanoscopic biological systems. J. Am. Chem. Soc. 2020, 142, 7542–7554. [Google Scholar] [CrossRef]
- Chen, Y.C.; Salter, P.S.; Knauer, S.; Weng, L.; Frangeskou, A.C.; Stephen, C.J.; Ishmael, S.N.; Dolan, P.R.; Johnson, S.; Green, B.L.; et al. Laser writing of coherent colour centres in diamond. Nat. Photon. 2017, 11, 77–80. [Google Scholar] [CrossRef]
- Sotillo, B.; Bharadwaj, V.; Hadden, J.P.; Sakakura, M.; Chiappini, A.; Fernandez, T.T.; Longhi, S.; Jedrkiewicz, O.; Shimotsuma, Y.; Criante, L.; et al. Diamond photonics platform enabled by femtosecond laser writing. Sci. Rep. 2016, 6, 35566. [Google Scholar] [CrossRef] [PubMed]
- Courvoisier, A.; Booth, M.J.; Salter, P.S. Diamond photonics platform enabled by femtosecond laser writing. Appl. Phys. Lett. 2016, 109, 031109. [Google Scholar] [CrossRef]
- Acosta, V.M.; Bauch, E.; Ledbetter, M.P.; Waxman, A.; Bouchard, L.S.; Budker, D. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 2010, 104, 070801. [Google Scholar] [CrossRef] [PubMed]
- Sotillo, B.; Chiappini, A.; Bharadwaj, V.; Hadden, J.P.; Bosia, F.; Olivero, P.; Ferrari, M.; Ramponi, R.; Barclay, P.E.; Eaton, S.M. Polarized micro-Raman studies of femtosecond laser written stress-induced optical waveguides in diamond. Appl. Phys. Lett. 2018, 112, 031109. [Google Scholar] [CrossRef]
- Becker, J.N.; Neu, E. The silicon vacancy center in diamond. Semicond. Semimet. 2020, 103, 201–235. [Google Scholar]
- Wrachtrup, J.; von Borczyskowski, C.; Bernard, J.; Orrit, M.; Brown, R. Optical detection of magnetic resonance in a single molecule. Nature 1993, 363, 244–245. [Google Scholar] [CrossRef]
- Doherty, M.W.; Dolde, F.; Fedder, H.; Jelezko, F.; Wrachtrup, J.; Manson, N.B.; Hollenberg, L.C.L. Theory of the ground-state spin of the NV- center in diamond. Phys. Rev. B 2012, 85, 205203. [Google Scholar] [CrossRef]
- Wang, N.; Liu, G.; Leong, W.; Zeng, H.; Feng, X.; Li, S.; Dolde, F.; Fedder, H.; Wrachtrup, J.; Cui, X.; et al. Magnetic Criticality Enhanced Hybrid Nanodiamond Thermometer under Ambient Conditions. Phys. Rev. X 2010, 8, 011042. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Ding, S.; Wang, S.; Hu, Y.; Liu, H.; Shang, Z.; Gu, Y. Integrated NV Center-Based Temperature Sensor for Internal Thermal Monitoring in Optical Waveguides. Sensors 2025, 25, 4123. https://doi.org/10.3390/s25134123
Zhao Y, Ding S, Wang S, Hu Y, Liu H, Shang Z, Gu Y. Integrated NV Center-Based Temperature Sensor for Internal Thermal Monitoring in Optical Waveguides. Sensors. 2025; 25(13):4123. https://doi.org/10.3390/s25134123
Chicago/Turabian StyleZhao, Yifan, Shihan Ding, Shuo Wang, Yiming Hu, Hongliang Liu, Zhen Shang, and Yongjian Gu. 2025. "Integrated NV Center-Based Temperature Sensor for Internal Thermal Monitoring in Optical Waveguides" Sensors 25, no. 13: 4123. https://doi.org/10.3390/s25134123
APA StyleZhao, Y., Ding, S., Wang, S., Hu, Y., Liu, H., Shang, Z., & Gu, Y. (2025). Integrated NV Center-Based Temperature Sensor for Internal Thermal Monitoring in Optical Waveguides. Sensors, 25(13), 4123. https://doi.org/10.3390/s25134123