The Initial Attitude Estimation of an Electromagnetic Projectile in the High-Temperature Flow Field Based on Mask R-CNN and the Multi-Constraints Genetic Algorithm
Abstract
:1. Introduction
2. Improved Attitude Measurement Method
2.1. Preprocessing
2.2. Outlier Removal Based on Line Segment Features
2.3. Improved Genetic Algorithm for Image Restoration
2.4. Optimized Search Strategy for Attitude Calculation
Algorithm 1: Improved Genetic Algorithm |
Input: population_size = 100; max_generations = 50; mutation_rate = 0.1; crossover_rate = 0.8; trans_x_offset = 30; trans_y_offset = 10; angle = 0; angle_offset = 5. Output: The best transformation parameters. |
1. If The area of the current image 2. Template = select the most recent image with area greater than 0.8; 3. Else Template = the next frame; 4. End. 5. Based on Equation (2), calculate the relative displacement of the centroids of the current image and the template to obtain the relative displacement values: trans_x, trans_y. 6. Set initialization parameters and initialize the population based on the initial parameters: 7. trans_x_range = [trans_x − trans_x_offset, trans_x + trans_x_offset]; 8. trans_y_range = [trans_y − trans_y_offset, trans_y + trans_y_offset]; 9. angle_range = [angle − angle_offset, angle + angle_offset]; 10. While (the number of iterations max_generations) 11. Initialize the population. 10. For each individual, calculate the fitness according to Equation (3). 11. In each generation: 12. Tournament selection involves selecting the individual with high fitness as the parent. 13. Generate new offspring through two-point crossover and site mutation [24,39]. 14. Perform elitism to ensure the best individuals are preserved. 15. end while 16. output the fitness of these solutions. |
3. Measurement System and Target Analysis
3.1. Measurement System
3.2. Target Analysis
4. Results and Discussion
4.1. Experimental Calibration
4.2. Mask R-CNN Performance Analysis
4.3. Edge Segmentation and Genetic Algorithm Performance Analysis
4.4. Attitude Measurement Performance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Z.; Wang, L.; Zhang, X.; Wang, Y. Position and attitude estimation algorithm and error analysis of high-spin projectile based on dual high-speed cameras intersected. Guofang Keji Daxue Xuebao J. Natl. Univ. Def. Technol. 2022, 44, 71–79. [Google Scholar]
- Gao, Y.; Ni, Y.; Wang, Z.; Xu, Y.; Jin, Y.; Li, B. Modeling and simulation of muzzle flow field of railgun with metal vapor and arc. Def. Technol. 2019, 16, 802–810. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Y.; Wang, D.; Xue, S.; Jiao, M.; Gao, C. A data processing method for two-Color pyrometers in accurate temperature measurement of high-temperature flow fields. Measurement 2024, 243, 116431. [Google Scholar] [CrossRef]
- Weimer, J.J.; Singer, I.L. Temperatures From Spectroscopic Studies of Hot Gas and Flame Fronts in a Railgun. IEEE Trans. Plasma Sci. 2010, 39, 174–179. [Google Scholar] [CrossRef]
- Cassinis, L.P.; Fonod, R.; Gill, E. Review of the robustness and applicability of monocular pose estimation systems for relative navigation with an uncooperative spacecraft. Prog. Aerosp. Sci. 2019, 110, 100548. [Google Scholar] [CrossRef]
- Jia, G.; Li, X.; Zhang, D.; Xu, W.; Lv, H.; Shi, Y.; Cai, M. Visual-SLAM Classical Framework and Key Techniques: A Review. Sensors 2022, 22, 4582. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhu, Z.; Tang, H.; Blasch, E.; Pham, K.D.; Chen, G. Flying Projectile Attitude Determination from Ground-Based Monocular Imagery with a Priori Knowledge. Information 2024, 15, 201. [Google Scholar] [CrossRef]
- Decker, R.J.; Koelsch, M.N.; Yakimenko, O.A. An Automated Method for Computer Vision Analysis of Cannon-Launched Projectile Video. J. Test. Eval. 2014, 42, 1248–1256. [Google Scholar] [CrossRef]
- Zhong, L.; Chen, S.; Wang, W.; Yang, W.; Yuan, G.; Guo, P.; Yang, X.; Zhang, X. Uncooperative Spacecraft Pose Estimation with Normalized Segmentation Coordinate Space. IEEE/ASME Trans. Mechatronics 2024. [Google Scholar] [CrossRef]
- Zhou, L.; Koppel, D.; Kaess, M.; Complete, A. Accurate and Efficient Solution for the Perspective-N-Line Problem. IEEE Robot. Autom. Lett. 2020, 6, 699–706. [Google Scholar] [CrossRef]
- Sharma, S.; Ventura, J.; D’Amico, S. Robust model-based monocular pose initialization for noncooperative spacecraft rendezvous. J. Spacecr. Rocket. 2018, 55, 1414–1429. [Google Scholar] [CrossRef]
- Peng, J.; Xu, W.; Yan, L.; Pan, E.; Liang, B.; Wu, A. A Pose Measurement Method of a Space Noncooperative Target Based on Maximum Outer Contour Recognition. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 512–526. [Google Scholar] [CrossRef]
- Luckett, J.A. Comparison of Three Machine Vision Pose Estimation Systems Based on Corner, Line, and Ellipse Extraction for Satellite Grasping. Diss. Theses-Gradworks 2012. [Google Scholar] [CrossRef]
- Andriyanov, N.A.; Magdeev, R.G.; Dementyiev, V.E. Building Structures Image Matching Using Convolutional Neural Network. In Proceedings of the Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 12–14 March 2024; pp. 1–4. [Google Scholar]
- Deng, L.; Suo, H.; Jia, Y.; Huang, C. Pose Estimation Method for Non-Cooperative Target Based on Deep Learning. Aerospace 2022, 9, 770. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, X.; Jiang, H.; Mao, W.; Li, R.; Andriyanov, N.; Soloviev, V.; Fu, L. NDMFCS: An automatic fruit counting system in modern apple orchard using abatement of abnormal fruit detection. Comput. Electron. Agric. 2023, 211, 108036. [Google Scholar] [CrossRef]
- Jin, T.; Han, X.; Wang, P.; Zhang, Z.; Guo, J.; Ding, F. Enhanced deep learning model for apple detection, localization, and counting in complex orchards for robotic arm-based harvesting, Smart agricultural technology. Smart Agric. Technol. 2025, 10, 100784. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, H.; Wang, H.; Zhang, Y. Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision. Expert Syst. Appl. 2022, 211, 11. [Google Scholar] [CrossRef]
- Han, L.; Liu, Z.; Lian, S. TP3M: Transformer-based Pseudo 3D Image Matching with Reference Image. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 3962–3968. [Google Scholar]
- Guo, J.; Chen, H.; Liu, B.; Xu, F. A system and method for person identification and positioning incorporating object edge detection and scale-invariant feature transformation. Measurement 2023, 223, 113759. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Q.; Ye, Q.; Yu, D.; Yu, Z.; Liu, Y. A binocular vision-based underwater object size measurement paradigm: Calibration-Detection-Measurement (C-D-M). Measurement 2023, 216, 112997. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, Y.; Wang, C.; He, P. Binocular vision measurement for large-scale weakly textured ship hull plates using feature points encoding method. Measurement 2023, 221, 113476. [Google Scholar] [CrossRef]
- Zhang, C.; Meng, G.; Su, B.; Xiang, S.; Pan, C. Monocular contextual constraint for stereo matching with adaptive weights assignment. Image Vis. Comput. 2022, 121, 104424. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Zhang, W.; Liao, P.; Li, K.; Zhou, J.; Wang, G. Low-dose CT via convolutional neural network. Biomed. Opt. Express 2017, 8, 679–694. [Google Scholar] [CrossRef]
- Fang, H.; Chen, H.; Jiang, H.; Wang, Y.; Liu, Y.; Liu, F.; He, Y. Research on Method of Farmland Obstacle Boundary Extraction in UAV Remote Sensing Images. Sensors 2019, 19, 4431. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, H.; Ni, T.; Huang, L.; Yang, J. Research on Multi-Object Sorting System Based on Deep Learning. Sensors 2021, 21, 6238. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef]
- Lin, X.Y.; Zhou, Y.J.; Liu, Y.P.; Zhu, C. A Comprehensive Review of Image Line Segment Detection and Description: Taxonomies, Comparisons, and Challenges. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 8074–8093. [Google Scholar] [CrossRef]
- He, P.; Zuo, L.; Zhang, C.; Zhang, Z. A Value Recognition Algorithm for Pointer Meter Based on Improved Mask-RCNN. In Proceedings of the 2019 9th International Conference on Information Science and Technology (ICIST), Hulunbuir, China, 2–5 August 2019; pp. 108–113. [Google Scholar]
- Cheltha, J.N.; Sharma, C.; Prashar, D.; Khan, A.A.; Kadry, S. Enhanced human motion detection with hybrid RDA-WOA-based RNN and multiple hypothesis tracking for occlusion handling. Image Vis. Comput. 2024, 150, 105234. [Google Scholar] [CrossRef]
- Pally, R.J.; Samadi, S. Application of image processing and convolutional neural networks for flood image classification and semantic segmentation. Environ. Model. Softw. 2022, 148, 105285. [Google Scholar] [CrossRef]
- Deriche, R. Using Canny’s criteria to derive a recursively implemented optimal edge detector. Int. J. Comput. Vis. 1987, 1, 167–187. [Google Scholar] [CrossRef]
- He, D.; Li, K.; Chen, Y.; Miao, J.; Li, X.; Shan, S.; Ren, R. Obstacle detection in dangerous railway track areas by a convolutional neural network. Meas. Sci. Technol. 2021, 32, 105401. [Google Scholar] [CrossRef]
- Silva, C.A.D.; de Oliveira, Á.V.F.M.; Fernandes, M.A.C. Validation of a Dynamic Planning Navigation Strategy Applied to Mobile Terrestrial Robots. Sensors 2018, 18, 4322. [Google Scholar] [CrossRef]
- Atallah, M.J.; Duket, T.W. Pattern matching in the Hamming distance with thresholds. Inf. Process. Lett. 2011, 111, 674–677. [Google Scholar] [CrossRef]
- Deng, W.; Zhao, H.; Zou, L.; Li, G.; Yang, X.; Wu, D. A novel collaborative optimization algorithm in solving complex optimization problems. Soft Comput. 2016, 21, 4387–4398. [Google Scholar] [CrossRef]
- Gao, Z.; Zhuang, Y.; Gu, J. Multi-strategy arithmetic optimization algorithm for global optimization and uncertain motion tracking. Clust. Comput. 2024, 28, 14. [Google Scholar] [CrossRef]
- Soon, G.K.; Guan, T.T.; On, C.K.; Alfred, R.; Anthony, P. A Comparison on the Performance of Crossover Techniques in Video Game. In Proceedings of the 2013 IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2013), Penang, Malaysia, 29 November–1 December 2013. [Google Scholar]
- Cao, B.; Ge, X.; Guo, W.; Fan, W.; Li, M.; Li, J.; Sun, X.; Chen, Y. Analysis and Calculation of Rail Transient Temperature During Electromagnetic Launch. IEEE Trans. Plasma Sci. 2017, 45, 1443–1447. [Google Scholar] [CrossRef]
Parameter | Camera Parameters | Left Camera | Right Camera |
---|---|---|---|
Camera intrinsics | Focal length | ||
Main point | |||
Radial distortion | |||
Tangential distortion | |||
Camera extrinsics | Rotation matrix | ||
Translation matrix |
System Configuration and Hyperparameters | Parameter |
---|---|
computing platform | 16 GB of RAM |
NVIDIA GeForce RTX 3060 Ti GPU | |
Intel i5-12400KF CPU | |
input image resolution | 320 × 384 pixels |
network parameters | Adam optimizer |
batch size | 2 |
initial learning rate | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yu, M.; Guo, Y.; Gao, C. The Initial Attitude Estimation of an Electromagnetic Projectile in the High-Temperature Flow Field Based on Mask R-CNN and the Multi-Constraints Genetic Algorithm. Sensors 2025, 25, 3608. https://doi.org/10.3390/s25123608
Chen J, Yu M, Guo Y, Gao C. The Initial Attitude Estimation of an Electromagnetic Projectile in the High-Temperature Flow Field Based on Mask R-CNN and the Multi-Constraints Genetic Algorithm. Sensors. 2025; 25(12):3608. https://doi.org/10.3390/s25123608
Chicago/Turabian StyleChen, Jinlong, Miao Yu, Yongcai Guo, and Chao Gao. 2025. "The Initial Attitude Estimation of an Electromagnetic Projectile in the High-Temperature Flow Field Based on Mask R-CNN and the Multi-Constraints Genetic Algorithm" Sensors 25, no. 12: 3608. https://doi.org/10.3390/s25123608
APA StyleChen, J., Yu, M., Guo, Y., & Gao, C. (2025). The Initial Attitude Estimation of an Electromagnetic Projectile in the High-Temperature Flow Field Based on Mask R-CNN and the Multi-Constraints Genetic Algorithm. Sensors, 25(12), 3608. https://doi.org/10.3390/s25123608