Effect of Geometrical Configuration and Strain Rate on Aluminum Alloy 5083 and S550 Steel Characterized by Digital Image Correlation
Abstract
:1. Introduction
2. Methodology
3. Quasi-Static Coupon Tests
3.1. Large Coupon Specimens
3.2. Small Coupon Specimens
3.3. Strain Measurement Accuracy
3.4. Results Summary
4. Split-Hopkinson Bar Tests
4.1. Rate Dependence of AA5083
4.2. Rate Dependence of S550
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boursier Niutta, C.; Tridello, A.; Ciardiello, R.; Paolino, D.S. Strain measurement with optic fibers for structural health monitoring of woven composites: Comparison with strain gauges and digital image correlation measurements. Sensors 2023, 23, 9794. [Google Scholar] [CrossRef] [PubMed]
- Mguil-Touchal, S.; Morestin, F.; Brunei, M. Various experimental applications of digital image correlation method. WIT Trans. Model. Simul. 2024, 17, 14. [Google Scholar]
- Bogdanov, A.A.; Panin, S.V.; Lyubutin, P.S.; Eremin, A.V.; Buslovich, D.G.; Byakov, A.V. An Automated Optical Strain Measurement System for Estimating Polymer Degradation under Fatigue Testing. Sensors 2022, 22, 6034. [Google Scholar] [CrossRef]
- Kosin, V.; Fau, A.; Jailin, C.; Hild, F.; Wick, T. Parameter identification of a phase-field fracture model using integrated digital image correlation. Comput. Methods Appl. Mech. Eng. 2024, 420, 116689. [Google Scholar] [CrossRef]
- Kozłowska, A.; Kokot, G.; Matus, K.; Grajcar, A. Monitoring the phase evolution and fracture behavior of advanced multiphase QP steel using EBSD technique and digital image correlation. Theor. Appl. Fract. Mech. 2024, 133, 104520. [Google Scholar] [CrossRef]
- Bardakov, V.V.; Marchenkov, A.Y.; Poroykov, A.Y.; Machikhin, A.S.; Sharikova, M.O.; Meleshko, N.V. Feasibility of digital image correlation for fatigue cracks detection under dynamic loading. Sensors 2021, 21, 6457. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, S.; Lee, Y.J.; Sim, S.H. Stress estimation using digital image correlation with compensation of camera motion-induced error. Sensors 2019, 19, 5503. [Google Scholar] [CrossRef]
- Valeri, G.; Koohbor, B.; Kidane, A.; Sutton, M.A. Determining the tensile response of materials at high temperature using DIC and the Virtual Fields Method. Opt. Lasers Eng. 2017, 91, 53–61. [Google Scholar] [CrossRef]
- Wildemann, V.; Strungar, E.; Lobanov, D.; Mugatarov, A.; Chebotareva, E. Experimental study of postcritical deformation stage realization in layered composites during tension using digital image correlation and acoustic emission. Acta Mech. Sin. 2025, 41, 423468. [Google Scholar] [CrossRef]
- Bengtsson, R.; Bergeron, L.; Afshar, R.; Mousavi, M.; Gamstedt, E.K. Evaluating the viscoelastic shear properties of clear wood via off-axis compression testing and digital-image correlation. Mech. Time-Depend. Mater. 2024, 28, 2069–2083. [Google Scholar] [CrossRef]
- Hebert, J.; Khonsari, M. The application of digital image correlation (DIC) in fatigue experimentation: A review. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 1256–1299. [Google Scholar] [CrossRef]
- Koohbor, B.; Kidane, A.; Sutton, M.A.; Zhao, X.; Mallon, S. Analysis of dynamic bending test using ultra high speed DIC and the virtual fields method. Int. J. Impact Eng. 2017, 110, 299–310. [Google Scholar] [CrossRef]
- Mehrabi, M.; Martulli, L.M.; Bernasconi, A.; Carboni, M. Estimation of Crack Tip Position in Adhesively Bonded Joints Subjected to Mode II Fatigue Loading. Sensors 2024, 24, 7676. [Google Scholar] [CrossRef] [PubMed]
- Jordan, B.; Grolleau, V.; Mohr, D. Using surround DIC to extract true stress–strain curve from uniaxial tension experiments. Int. J. Solids Struct. 2023, 268, 112171. [Google Scholar] [CrossRef]
- Li, J.; Yang, G.; Siebert, T.; Shi, M.F.; Yang, L. A method of the direct measurement of the true stress–strain curve over a large strain range using multi-camera digital image correlation. Opt. Lasers Eng. 2018, 107, 194–201. [Google Scholar] [CrossRef]
- Divya, P.V.; Viswanadham, B.V.; Gourc, J.P. Evaluation of tensile strength-strain characteristics of fiber-reinforced soil through laboratory tests. J. Mater. Civ. Eng. 2014, 26, 14–23. [Google Scholar] [CrossRef]
- Quanjin, M.; Rejab, M.R.M.; Halim, Q.; Merzuki, M.N.M.; Darus, M.A.H. Experimental investigation of the tensile test using digital image correlation (DIC) method. Mater. Today Proc. 2020, 27, 757–763. [Google Scholar] [CrossRef]
- Al-Kamaki, Y.S.S. Ultimate strain models derived using a Digital Image Correlation (DIC) system for preloaded RC columns subjected to heating and cooling and confined with CFRP sheets. J. Build. Eng. 2021, 41, 102306. [Google Scholar] [CrossRef]
- Weidner, A.; Biermann, H. Review on strain localization phenomena studied by high-resolution digital image correlation. Adv. Eng. Mater. 2021, 23, 2001409. [Google Scholar] [CrossRef]
- Suthar, H.; Bhattacharya, A.; Paul, S.K. DIC-based approach to predict post necking behavior for AA6061, AA7075 and their friction stir welded joints. Mech. Mater. 2022, 172, 104364. [Google Scholar] [CrossRef]
- Venkatachalam, S.; Khaja Mohiddin, S.M.; Murthy, H. Determination of damage evolution in CFRP subjected to cyclic loading using DIC. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 1412–1425. [Google Scholar] [CrossRef]
- Andrew, J.J.; Arumugam, V.; Bull, D.J.; Dhakal, H.N. Residual strength and damage characterization of repaired glass/epoxy composite laminates using AE and DIC. Compos. Struct. 2016, 152, 124–139. [Google Scholar] [CrossRef]
- Chen, C.; Qian, X.; Liu, T. Measuring crack depth via normalized deformation profiles from digital image correlation based on optimum correlation. Theor. Appl. Fract. Mech. 2024, 132, 104461. [Google Scholar] [CrossRef]
- Chen, C.; Qian, X. Quantifying through-thickness J for plane strain specimens using digital image correlation considering constraint effects. Eng. Fract. Mech. 2022, 267, 108430. [Google Scholar] [CrossRef]
- Chen, C.; Qian, X. A direct crack sizing approach from DIC strain analyses under elasto-plastic and dynamic conditions. Theor. Appl. Fract. Mech. 2025, 136, 104861. [Google Scholar] [CrossRef]
- Chen, C.; Qian, X.; Liu, T. Quantifying reversed loading effects on fracture resistance curve in M (T) specimens using DIC. Eng. Fract. Mech. 2024, 307, 110349. [Google Scholar] [CrossRef]
- Chen, C.; Qian, X. Measuring J-R curve under dynamic loading conditions using digital image correlation. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 3892–3911. [Google Scholar] [CrossRef]
- Chen, C.; Qian, X. A non-contact approach to measure JR curve for side-grooved specimens using digital image correlation. Theor. Appl. Fract. Mech. 2022, 121, 103549. [Google Scholar] [CrossRef]
- Chen, C.; Liu, T.; Qian, X. A node release approach to determine cohesive law parameters with constraint-based transferability. Eng. Fract. Mech. 2025, 322, 111167. [Google Scholar] [CrossRef]
- Kim, S.K.; Shin, H.G.; Timilsina, S.; Kim, J.S. Determining the fracture process zone length and mode I stress intensity factor in concrete structures via mechanoluminescent technology. Sensors 2020, 20, 1257. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Weinberg, K. A review on split Hopkinson bar experiments on the dynamic characterisation of concrete. Constr. Build. Mater. 2018, 190, 1264–1283. [Google Scholar] [CrossRef]
- Jiang, F.; Vecchio, K.S. Hopkinson bar loaded fracture experimental technique: A critical review of dynamic fracture toughness tests. Appl. Mech. Rev. 2009, 62, 060802. [Google Scholar] [CrossRef]
- Van Lerberghe, A.; Li, K.S.O.; Barr, A.D.; Clarke, S.D. An open-source algorithm for correcting stress wave dispersion in split-Hopkinson pressure bar experiments. Sensors 2025, 25, 281. [Google Scholar] [CrossRef] [PubMed]
- Dvořák, R.; Falta, J.; Zlámal, P.; Koudelka, P.; Kopačka, J.; Kylar, J.; Jioušek, O. Sample transfer function estimation of high-frequency elastic waves using Hopkinson bar. Meas. Sens. 2025, 38, 101673. [Google Scholar] [CrossRef]
- Yu, X.; Chen, L.; Fang, Q.; Jiang, X.; Zhou, Y. A review of the torsional split Hopkinson bar. Adv. Civ. Eng. 2018, 2018, 2719741. [Google Scholar] [CrossRef]
- Baumann, G.; Czibula, C.; Hirn, U.; Feist, F. A digital-twin driven Split Hopkinson bar layout for the tensile characterization of thin, low impedance, sheet-like materials. Int. J. Impact Eng. 2024, 194, 105098. [Google Scholar] [CrossRef]
- Dou, Q.B.; Wu, K.R.; Suo, T.; Zhang, C.; Guo, X.; Guo, Y.Z.; Guo, W.G.; Li, Y.L. Experimental methods for determination of mechanical behaviors of materials at high temperatures via the split Hopkinson bars. Acta Mech. Sin. 2020, 36, 1275–1293. [Google Scholar] [CrossRef]
- Kolsky, H. An investigation of the mechanical properties of materials at very high rates of loading. Proc. Phys. Soc. Sect. B 1949, 62, 676. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Q.; Huang, D.; Yv, Y. Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics. Eng. Fract. Mech. 2016, 160, 124–137. [Google Scholar] [CrossRef]
- Gray, G.T., III. High-Strain-Rate Testing of Materials: The Split-Hopkinson Pressure Bar. Charact. Mater. 2002, 1–15. [Google Scholar] [CrossRef]
- Verleysen, P.; Degrieck, J.; Verstraete, T.; Van Slycken, J. Influence of specimen geometry on split Hopkinson tensile bar tests on sheet materials. Exp. Mech. 2008, 48, 587–598. [Google Scholar] [CrossRef]
- Huh, H.; Kang, W.J.; Han, S.S. A tension split Hopkinson bar for investigating the dynamic behavior of sheet metals. Exp. Mech. 2002, 42, 8–17. [Google Scholar] [CrossRef]
- Gama, B.A.; Lopatnikov, S.L.; Gillespie, J.W., Jr. Hopkinson bar experimental technique: A critical review. Appl. Mech. Rev. 2004, 57, 223–250. [Google Scholar] [CrossRef]
- Tan, X.; Guo, W.; Gao, X.; Liu, K.; Wang, J.; Zhou, P. A new technique for conducting split Hopkinson tensile bar test at elevated temperatures. Exp. Tech. 2017, 41, 191–201. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, J.; Farbaniec, L.; Pellegrino, A. Optimal design, development and experimental analysis of a tension–torsion Hopkinson bar for the understanding of complex impact loading scenarios. Exp. Mech. 2023, 63, 773–789. [Google Scholar] [CrossRef]
- Chen, C.; Qian, X. On the Accurate Strain Measurement in Split Hopkinson Tensile Bar Tests. In Proceedings of the 17th East Asian-Pacific Conference on Structural Engineering and Construction 2022: EASEC-17, Singapore, 27–30 June 2022; Springer Nature: Singapore, 2023; pp. 215–222. [Google Scholar]
- Wu, R.; Kong, C.; Li, K.; Zhang, D. Real-time digital image correlation for dynamic strain measurement. Exp. Mech. 2016, 56, 833–843. [Google Scholar] [CrossRef]
- Gilat, A.; Schmidt, T.E.; Walker, A.L. Full field strain measurement in compression and tensile split Hopkinson bar experiments. Exp. Mech. 2009, 49, 291–302. [Google Scholar] [CrossRef]
- Barr, A.D.; Rigby, S.E.; Clarke, S.D.; Farrimond, D.; Tyas, A. Temporally and spatially resolved reflected overpressure measurements in the extreme near field. Sensors 2023, 23, 964. [Google Scholar] [CrossRef]
- Genovese, K. An omnidirectional DIC system for dynamic strain measurement on soft biological tissues and organs. Opt. Lasers Eng. 2019, 116, 6–18. [Google Scholar] [CrossRef]
- Pan, B.; Qian, K.; Xie, H.; Asundi, A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas. Sci. Technol. 2009, 20, 062001. [Google Scholar] [CrossRef]
- Tong, W. An evaluation of digital image correlation criteria for strain mapping applications. Strain 2005, 41, 167–175. [Google Scholar] [CrossRef]
- Pan, B. Digital image correlation for surface deformation measurement: Historical developments, recent advances and future goals. Meas. Sci. Technol. 2018, 29, 082001. [Google Scholar] [CrossRef]
- Lu, H.; Cary, P.D. Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient. Exp. Mech. 2000, 40, 393–400. [Google Scholar] [CrossRef]
- Sutton, M.A.; Orteu, J.J.; Schreier, H. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- E8/E8M; Standard Test Methods for Tension Testing of Metallic Materials 1. American Society of Testing and Materials (ASTM): West Conshohocken, PA, USA, 2024.
- Correlated Solutions. Vic-2D Reference Manual; Correlated Solutions: Irmo, SC, USA, 2014. [Google Scholar]
- Ramberg, W.; Osgood, W.R. Description of Stress-Strain Curves by Three Parameters; NASA: Washington, DC, USA, 1943. [Google Scholar]
- Gray, G.T., III. Classic split-Hopkinson pressure bar testing. In Mechanical Testing and Evaluation; ASM International: Almere, The Netherlands, 2000; pp. 462–476. [Google Scholar]
- Clausen, A.H.; Børvik, T.; Hopperstad, O.S.; Benallal, A. Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality. Mater. Sci. Eng. A 2004, 364, 260–272. [Google Scholar] [CrossRef]
- Chen, Y.; Clausen, A.H.; Hopperstad, O.S.; Langseth, M. Stress–strain behaviour of aluminium alloys at a wide range of strain rates. Int. J. Solids Struct. 2009, 46, 3825–3835. [Google Scholar] [CrossRef]
- Feng, L. Rapid SN type life estimation for low cycle fatigue of high-strength steels at a low ambient temperature. Steel and Composite Structures. Int. J. 2019, 33, 777–792. [Google Scholar]
- Feng, L.; Liu, T.; Qian, X.; Chen, C. A complete integrity assessment of welded connections under high and low cycle fatigue followed by fracture failure. Steel and Composite Structures. Int. J. 2022, 43, 465–481. [Google Scholar]
- Sirigiri, V.K.R.; Gudiga, V.Y.; Gattu, U.S.; Suneesh, G.; Buddaraju, K.M. A review on Johnson Cook material model. Mater. Today Proc. 2022, 62, 3450–3456. [Google Scholar] [CrossRef]
Material | Specimen Type | Configuration (mm) | No. of Specimens | VE Ranges (mm) | Loading Condition | Strain Rate |
---|---|---|---|---|---|---|
AA5083 | Large coupon | 3 | 15, 35, 55, 75, 95 | Quasi-static | 0.0001/s | |
Small coupon | 3 | 1, 3, 5, 10, 15 | Quasi-static | 0.0005/s | ||
Hopkinson | 20 | 1, 3, 5 | Dynamic | 500–3000/s | ||
S550 | Large coupon | 3 | 15, 35, 55, 75, 95 | Quasi-static | 0.0001/s | |
Small coupon | 3 | 1, 3, 5, 10, 15 | Quasi-static | 0.0005/s | ||
Hopkinson | 30 | 1, 3, 5 | Dynamic | 500–2500/s |
70 | 0.3 | 258 | 6.0 | 2.0 |
600 | 900 | 0.6 | 0.58 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Feng, L. Effect of Geometrical Configuration and Strain Rate on Aluminum Alloy 5083 and S550 Steel Characterized by Digital Image Correlation. Sensors 2025, 25, 3607. https://doi.org/10.3390/s25123607
Chen C, Feng L. Effect of Geometrical Configuration and Strain Rate on Aluminum Alloy 5083 and S550 Steel Characterized by Digital Image Correlation. Sensors. 2025; 25(12):3607. https://doi.org/10.3390/s25123607
Chicago/Turabian StyleChen, Cheng, and Liuyang Feng. 2025. "Effect of Geometrical Configuration and Strain Rate on Aluminum Alloy 5083 and S550 Steel Characterized by Digital Image Correlation" Sensors 25, no. 12: 3607. https://doi.org/10.3390/s25123607
APA StyleChen, C., & Feng, L. (2025). Effect of Geometrical Configuration and Strain Rate on Aluminum Alloy 5083 and S550 Steel Characterized by Digital Image Correlation. Sensors, 25(12), 3607. https://doi.org/10.3390/s25123607