Unobtrusive Sleep Posture Detection Using a Smart Bed Mattress with Optimally Distributed Triaxial Accelerometer Array and Parallel Convolutional Spatiotemporal Network
Abstract
1. Introduction
2. Related Works
3. Materials and Methods
3.1. Accelerometer Performance Evaluation
3.2. Optimal Placement of Accelerometers
3.3. Participants
3.4. Experimental Procedures
3.5. Statistical Analysis for Accelerometer Performance
3.6. Data Preprocessing with Improved Density Peak Clustering
- Difficulty in distinguishing intra-class differences and inter-class similarities;
- Inability to automatically identify cluster centers;
- Increased subjectivity due to human intervention.
- Local Density
- 2.
- Repulsion Factor
- 3.
- Centrality Evaluation
- 4.
- Adaptive Center Selection
- 5.
- Point gap
3.7. Model Training and Architecture
- LSTM [40] captures long-term dependencies within time domain while alleviating gradient vanishing.
- Bi-LSTM [41] enhances temporal awareness by processing data bidirectionally—both forward and backward—enabling better understanding of contextual relationships across time.
3.8. Performance Analysis Tools for Improved DPC
4. Results
4.1. Experimental Environment and Hyperparameter Selection
4.2. Performance of Accelerometer
4.3. System Performance from a Metrological Point of View
4.4. Comparative Test for Clustering
4.5. Comparative Test for Sleep Posture Classification
5. Discussion
5.1. PCSN Performance Evaluation
5.2. Comparison with Non-Contact Sleep Posture Detection Methods
5.3. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DLP | Deep Learning Position |
SVM | Support Vector Machine |
CNN | Convolution Neural Network |
LSTM | Long Short-Term Memory |
S3CNN | Sparse Sensor-based Spatiotemporal Convolution Neural Network |
BEMD | Body-Earth Mover’s Distance |
PCSN | Parallel Convolutional Spatiotemporal Network |
DBSC | Density-Based Spatial Clustering |
FNDPC | fuzzy neighborhood Density Peak Clustering |
DPC | Density Peak Clustering |
FKNNDPC | Fuzzy K-Nearest Neighbors Density Peak Clustering |
Appendix A
Algorithm A1 Pseudocode of improved DPC algorithm | |
0 | |
1 | |
2 | OutPut: Cluster Centers Set: Final_Centers |
3 | begin |
4 | for α ← 1 to n do |
5 | ) |
6 | end for |
7 | ← avg(ρ) |
8 | ← avg(δ) |
9 | ) |
10 | quick_sort(centers,γ,‘desc’) |
11 | for α ← 1 to |centers| do |
12 | |
13 | end for |
14 | ← avg(g) |
15 | for α ← |centers| do 1 do |
16 | then |
17 | |
18 | end for |
19 | then |
20 | break |
21 | end if |
22 | end for |
23 | return final_centers |
24 | end |
References
- Perez-Pozuelo, I.; Zhai, B.; Palotti, J.; Mall, R.; Aupetit, M.; Garcia-Gomez, J.M.; Taheri, S.; Guan, Y.; Fernandez-Luque, L. The future of sleep health: A data-driven revolution in sleep science and medicine. npj Digit. Med. 2020, 3, 42. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.; Power, N.; Graham, E.; Deschênes, S.S.; Schmitz, N. The association between sleep and diabetes outcomes—A systematic review. Diabetes Res. Clin. Pract. 2020, 161, 108035. [Google Scholar] [CrossRef]
- Short, M.A.; Booth, S.A.; Omar, O.; Ostlundh, L.; Arora, T. The relationship between sleep duration and mood in adolescents: A systematic review and meta-analysis. Sleep Med. Rev. 2020, 52, 101311. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.-P.; Cherta-Murillo, A.; Darimont, C.; Mantantzis, K.; Martin, F.P.; Owen, L. The interrelationship between sleep, diet, and glucose metabolism. Sleep Med. Rev. 2023, 69, 101788. [Google Scholar] [CrossRef]
- Tasali, E.; Wroblewski, K.; Kahn, E.; Kilkus, J.; Schoeller, D.A. Effect of Sleep Extension on Objectively Assessed Energy Intake Among Adults With Overweight in Real-life Settings. JAMA Intern. Med. 2022, 182, 365. [Google Scholar] [CrossRef]
- Hombali, A.; Seow, E.; Yuan, Q.; Chang, S.H.S.; Satghare, P.; Kumar, S.; Verma, S.K.; Mok, Y.M.; Chong, S.A.; Subramaniam, M. Prevalence and correlates of sleep disorder symptoms in psychiatric disorders. Psychiatry Res. 2019, 279, 116–122. [Google Scholar] [CrossRef]
- Rudnicka, E.; Napierała, P.; Podfigurna, A.; Męczekalski, B.; Smolarczyk, R.; Grymowicz, M. The World Health Organization (WHO) approach to healthy ageing. Maturitas 2020, 139, 6–11. [Google Scholar] [CrossRef]
- Alotaibi, A.; Alosaimi, F.; Alajlan, A.; Bin Abdulrahman, K. The relationship between sleep quality, stress, and academic performance among medical students. J. Fam. Community Med. 2020, 27, 23. [Google Scholar] [CrossRef] [PubMed]
- Carbonaro, N.; Laurino, M.; Arcarisi, L.; Menicucci, D.; Gemignani, A.; Tognetti, A. Textile-Based Pressure Sensing Matrix for In-Bed Monitoring of Subject Sleeping Posture and Breathing Activity. Appl. Sci. 2021, 11, 2552. [Google Scholar] [CrossRef]
- Mansfield, S.; Obraczka, K.; Roy, S. Pressure Injury Prevention: A Survey. IEEE Rev. Biomed. Eng. 2020, 13, 352–368. [Google Scholar] [CrossRef]
- Ibrahim, A.; Chaccour, K.; Hajjam El Hassani, A.; Hajjam, M.; Andres, E. BedSense: A Bed-Mounted Sensor Node System for Sleep Activities Monitoring and Nocturnal Falls Detection. IEEE Sens. J. 2024, 24, 19944–19953. [Google Scholar] [CrossRef]
- Landry, S.A.; Beatty, C.; Thomson, L.D.J.; Wong, A.-M.; Edwards, B.A.; Hamilton, G.S.; Joosten, S.A. A review of supine position related obstructive sleep apnea: Classification, epidemiology, pathogenesis and treatment. Sleep Med. Rev. 2023, 72, 101847. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Kumar, A.; Nadeem, M.; Maaz, I. CNN-Based Smart Sleep Posture Recognition System. IoT 2021, 2, 119–139. [Google Scholar] [CrossRef]
- Jalal, B.; Romanelli, A.; Hinton, D.E. Sleep paralysis in Italy: Frequency, hallucinatory experiences, and other features. Transcult. Psychiatry 2021, 58, 427–439. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Ding, W.; Abdel-Fatah, L. The fusion of Internet of Intelligent Things (IoIT) in remote diagnosis of obstructive Sleep Apnea: A survey and a new model. Inf. Fusion 2020, 61, 84–100. [Google Scholar] [CrossRef]
- Oh, Y.S.; Kim, J.-H.; Xie, Z.; Cho, S.; Han, H.; Jeon, S.W.; Park, M.; Namkoong, M.; Avila, R.; Song, Z.; et al. Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nat. Commun. 2021, 12, 5008. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, H.; Wang, W. Video-PSG: An Intelligent Contactless Monitoring System for Sleep Staging. IEEE Trans. Biomed. Eng. 2025, 72, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Abdulsadig, R.S.; Rodriguez-Villegas, E. Sleep Posture Monitoring Using a Single Neck- Situated Accelerometer: A Proof-of-Concept. IEEE Access 2023, 11, 17693–17706. [Google Scholar] [CrossRef]
- Hosseini, M.-P.; Hosseini, A.; Ahi, K. A Review on Machine Learning for EEG Signal Processing in Bioengineering. IEEE Rev. Biomed. Eng. 2021, 14, 204–218. [Google Scholar] [CrossRef]
- Tam, A.Y.-C.; Zha, L.-W.; So, B.P.-H.; Lai, D.K.-H.; Mao, Y.-J.; Lim, H.-J.; Wong, D.W.-C.; Cheung, J.C.-W. Depth-Camera-Based Under-Blanket Sleep Posture Classification Using Anatomical Landmark-Guided Deep Learning Model. Int. J. Environ. Res. Public Health 2022, 19, 13491. [Google Scholar] [CrossRef]
- Van Gastel, M.; Stuijk, S.; Overeem, S.; Van Dijk, J.P.; Van Gilst, M.M.; De Haan, G. Camera-Based Vital Signs Monitoring During Sleep—A Proof of Concept Study. IEEE J. Biomed. Health Inform. 2021, 25, 1409–1418. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, K.; Xie, Y. A Deep Learning Method for Human Sleeping Pose Estimation with Millimeter Wave Radar. Sensors 2024, 24, 5900. [Google Scholar] [CrossRef]
- Song, Y.; Guo, S.; Liang, B. DeepLPos: A comprehensive hybrid deep learning model for lying position recognition using a tactile sensor array system. Meas. Sci. Technol. 2025, 36, 015702. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, P.; Wang, S.; Su, T.; Zhang, K.; Huang, L.; Wu, S. Sleep State Monitoring System Based on Flexible Pressure Sensor Arrays for Evaluating Sleep Quality. IEEE Sens. J. 2024, 24, 33217–33225. [Google Scholar] [CrossRef]
- Kau, L.-J.; Wang, M.-Y.; Zhou, H. Pressure-Sensor-Based Sleep Status and Quality Evaluation System. IEEE Sens. J. 2023, 23, 9739–9754. [Google Scholar] [CrossRef]
- Wang, K.; Feng, B.; Zhao, D.; Xiao, K.; Wu, G.; Shi, B.; Wang, R.; Chen, J.; Li, K.; Li, L.; et al. Noncontact in Bed Measurements of Electrocardiogram Using a Capacitively Coupled Electrode Array Based on Flexible Circuit Board. IEEE Trans. Instrum. Meas. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Chao, Y.; Liu, T.; Shen, L.-M. Method of recognizing sleep postures based on air pressure sensor and convolutional neural network: For an air spring mattress. Eng. Appl. Artif. Intell. 2023, 121, 106009. [Google Scholar] [CrossRef]
- Hoang, M.L.; Matrella, G.; Ciampolini, P. Metrological evaluation of contactless sleep position recognition using an accelerometric smart bed and machine learning. Sens. Actuators A Phys. 2025, 385, 116309. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Y.; Zhou, G. A dual fusion recognition model for sleep posture based on air mattress pressure detection. Sci. Rep. 2024, 14, 11084. [Google Scholar] [CrossRef]
- Liu, Z.; Shu, Z.; Cascioli, V.; McCarthy, P.W. Comparative Analysis of Force-Sensitive Resistors and Triaxial Accelerometers for Sitting Posture Classification. Sensors 2024, 24, 7705. [Google Scholar] [CrossRef]
- Riddick, R.; Smits, E.; Faber, G.; Shearwin, C.; Hodges, P.; Van Den Hoorn, W. Estimation of human spine orientation with inertial measurement units (IMU) at low sampling rate: How low can we go? J. Biomech. 2023, 157, 111726. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lin, F.; Wang, A.; Hu, Y.; Huang, M.-C.; Xu, W. Body-Earth Mover’s Distance: A Matching-Based Approach for Sleep Posture Recognition. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Dalmaijer, E.S.; Nord, C.L.; Astle, D.E. Statistical power for cluster analysis. BMC Bioinform. 2022, 23, 205. [Google Scholar] [CrossRef]
- Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics 2020, 9, 1295. [Google Scholar] [CrossRef]
- Ran, X.; Xi, Y.; Lu, Y.; Wang, X.; Lu, Z. Comprehensive survey on hierarchical clustering algorithms and the recent developments. Artif. Intell. Rev. 2023, 56, 8219–8264. [Google Scholar] [CrossRef]
- Hartley, S.; Royant-Parola, S.; Zayoud, A.; Gremy, I.; Matulonga, B. Do both timing and duration of screen use affect sleep patterns in adolescents? PLoS ONE 2022, 17, e0276226. [Google Scholar] [CrossRef]
- Wei, X.; Peng, M.; Huang, H.; Zhou, Y. An overview on density peaks clustering. Neurocomputing 2023, 554, 126633. [Google Scholar] [CrossRef]
- Koşar, E.; Barshan, B. A new CNN-LSTM architecture for activity recognition employing wearable motion sensor data: Enabling diverse feature extraction. Eng. Appl. Artif. Intell. 2023, 124, 106529. [Google Scholar] [CrossRef]
- Nasiri, A.; Yoder, J.; Zhao, Y.; Hawkins, S.; Prado, M.; Gan, H. Pose estimation-based lameness recognition in broiler using CNN-LSTM network. Comput. Electron. Agric. 2022, 197, 106931. [Google Scholar] [CrossRef]
- Shahid, F.; Zameer, A.; Muneeb, M. A novel genetic LSTM model for wind power forecast. Energy 2021, 223, 120069. [Google Scholar] [CrossRef]
- Kim, J.; Oh, S.; Kim, H.; Choi, W. Tutorial on time series prediction using 1D-CNN and BiLSTM: A case example of peak electricity demand and system marginal price prediction. Eng. Appl. Artif. Intell. 2023, 126, 106817. [Google Scholar] [CrossRef]
- Shan, C.H.; Chen, X.M. Multichannel concat-fusional convolutional neural networks. J. Intell. Fuzzy Syst. 2022, 43, 957–969. [Google Scholar] [CrossRef]
- Sun, K.; Tian, P.; Qi, H.; Ma, F.; Yang, G. An Improved Normalized Mutual Information Variable Selection Algorithm for Neural Network-Based Soft Sensors. Sensors 2019, 19, 5368. [Google Scholar] [CrossRef] [PubMed]
- Warrens, M.J.; Van Der Hoef, H. Understanding the Adjusted Rand Index and Other Partition Comparison Indices Based on Counting Object Pairs. J. Classif. 2022, 39, 487–509. [Google Scholar] [CrossRef]
- Gan, X.; Fan, H.; Yang, M.; Tang, F.; Liu, H.; Ma, Z. Machine Well Screening Method Based on POI Data and DBSCAN Clustering Algorithm. IEEE Geosci. Remote Sens. Lett. 2025, 22, 1–5. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, G.; Pan, J.-S.; Fan, T.; Lee, I. Density peaks clustering algorithm based on fuzzy and weighted shared neighbor for uneven density datasets. Pattern Recognit. 2023, 139, 109406. [Google Scholar] [CrossRef]
- Xu, X.; Ding, S.; Wang, L.; Wang, Y. A robust density peaks clustering algorithm with density-sensitive similarity. Knowl.-Based Syst. 2020, 200, 106028. [Google Scholar] [CrossRef]
- Srinivasan, S.; Gunasekaran, S.; Mathivanan, S.K.; Malar M.B., B.A.; Jayagopal, P.; Dalu, G.T. An active learning machine technique based prediction of cardiovascular heart disease from UCI-repository database. Sci. Rep. 2023, 13, 13588. [Google Scholar] [CrossRef]
- Wu, S.; Diao, H.; Feng, Y.; Zhang, Y.; Chen, H.; Akay, Y.M.; Akay, M.; Chen, C.; Chen, W. Lightweight Neural Network for Sleep Posture Classification Using Pressure Sensing Mat at Various Sensor Densities. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 3410–3421. [Google Scholar] [CrossRef]
- Hu, D.; Gao, W.; Ang, K.K.; Hu, M.; Chuai, G.; Huang, R. Smart Sleep Monitoring: Sparse Sensor-Based Spatiotemporal CNN for Sleep Posture Detection. Sensors 2024, 24, 4833. [Google Scholar] [CrossRef]
- Diao, H.; Chen, C.; Yuan, W.; Amara, A.; Tamura, T.; Fan, J.; Meng, L.; Liu, X.; Chen, W. Deep Residual Networks for Sleep Posture Recognition with Unobtrusive Miniature Scale Smart Mat System. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Dam, H.P.; Doan, N.P.; Pham, N.D.A.; Nguyen, D.M.; Pham, H.M.; Nguyen, H.H. In-Bed Posture Classification Using Pressure Sensor Data and Spiking Neural Network. In Proceedings of the 8th NAFOSTED Conference on Information and Computer Science (NICS), Hanoi, Vietnam, 21–22 December 2021; IEEE: New York, NY, USA, 2021; pp. 358–363. [Google Scholar] [CrossRef]
- Peruzzi, G.; Galli, A.; Giorgi, G.; Pozzebon, A. Sleep Posture Detection via Embedded Machine Learning on a Reduced Set of Pressure Sensors. Sensors 2025, 25, 458. [Google Scholar] [CrossRef] [PubMed]
- Chi, P.; Bai, Y.; Du, W.; Wei, X.; Liu, B.; Zhao, S.; Jiang, H.; Chi, A.; Shao, M. Altered Muscle–Brain Connectivity During Left and Right Biceps Brachii Isometric Contraction Following Sleep Deprivation: Insights from PLV and PDC. Sensors 2025, 25, 2162. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ren, G.; Wang, Z. Sleep Posture Recognition Method Based on Sparse Body Pressure Features. Appl. Sci. 2025, 15, 4920. [Google Scholar] [CrossRef]
Participants | Age (Years) | Height (cm) | Body Mass (kg) |
---|---|---|---|
Male (15) | 23.2 ± 1.6 | 176.7 ± 4.8 | 70.4 ± 8.1 |
Female (15) | 22.3 ± 1.4 | 164.6 ± 1.8 | 53.1 ± 5.2 |
Overall (30) | 22.7 ± 1.6 | 170.7 ± 7.1 | 61.8 ± 11.1 |
System Accuracy (°) | Spatial Domain Resolution (°) | Acceleration Domain Resolution (g) | |
---|---|---|---|
X Axis | 0.18 | 0.25 | 0.06 |
Y Axis | 0.16 | 0.24 | 0.07 |
Z Axis | 0.17 | 0.21 | 0.06 |
Name | Sensor Type | Configuration | Algorithm | Categories | Accuracy |
---|---|---|---|---|---|
[12] | accelerometer | 8 | Rule-based | 4 | 92% |
[23] | pressure sensor | 64 × 32 = 2048 | DLP | 6 | 97.5% |
[24] | flexible sensor | 2 × 2 = 4 | SVM | 4 | 96% |
[25] | pressure sensor | 20 × 11 = 220 | CNN, SVM | 4 | 96.987% |
[26] | flexible sensor | 4 × 11 = 44 | LSTM | 4 | 97.97% |
[29] | pressure sensor | 11 × 24 = 264 | AdaBoost, SVM | 3 | 99.9% |
[32] | pressure sensor | 64 × 128 = 8192 | BEMD | 6 | 91.21% |
[49] | pressure sensor | 32 × 32 = 1024 | ConcatNet | 4 | 95.56% |
[50] | piezoelectric sensor | 4 × 8 = 32 | S3CNN | 3 | 93.02% |
[51] | flexible sensor | 32 × 32 = 1024 | ResNet | 6 | 95.08% |
(Ours) | accelerometer | 8 | PCSN | 6 | 98.42% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Li, G.; Wang, C.; Cascioli, V.; McCarthy, P.W. Unobtrusive Sleep Posture Detection Using a Smart Bed Mattress with Optimally Distributed Triaxial Accelerometer Array and Parallel Convolutional Spatiotemporal Network. Sensors 2025, 25, 3609. https://doi.org/10.3390/s25123609
Liu Z, Li G, Wang C, Cascioli V, McCarthy PW. Unobtrusive Sleep Posture Detection Using a Smart Bed Mattress with Optimally Distributed Triaxial Accelerometer Array and Parallel Convolutional Spatiotemporal Network. Sensors. 2025; 25(12):3609. https://doi.org/10.3390/s25123609
Chicago/Turabian StyleLiu, Zhuofu, Gaohan Li, Chuanyi Wang, Vincenzo Cascioli, and Peter W. McCarthy. 2025. "Unobtrusive Sleep Posture Detection Using a Smart Bed Mattress with Optimally Distributed Triaxial Accelerometer Array and Parallel Convolutional Spatiotemporal Network" Sensors 25, no. 12: 3609. https://doi.org/10.3390/s25123609
APA StyleLiu, Z., Li, G., Wang, C., Cascioli, V., & McCarthy, P. W. (2025). Unobtrusive Sleep Posture Detection Using a Smart Bed Mattress with Optimally Distributed Triaxial Accelerometer Array and Parallel Convolutional Spatiotemporal Network. Sensors, 25(12), 3609. https://doi.org/10.3390/s25123609