SODS: Soil Health On-Demand Sensors—A Multi Parameter Field Study with Temporal Monitoring
Abstract
1. Introduction
2. Materials and Methods
2.1. Sensor Calibration
2.2. Soil Probe Setup
2.3. Study Site
2.4. Soil Sampling
2.5. Sample Preparation and Analysis Using the Reference Method
2.6. Data Analysis
2.7. GenAI
3. Results and Discussion
3.1. Validation by Parameter
3.1.1. Soil Organic Matter (SOM)
3.1.2. Total Soil Carbon (TSC)
3.1.3. Soil Volumetric Density (SVD)
3.1.4. Carbonaceous Soil Minerals (CSMs)
3.1.5. Ammonium (NH4)
3.1.6. Nitrate (NO3)
3.1.7. Soil Hydration State (SHS)
3.2. Soil Contextual Modeling
3.3. Sensor Accuracy and Reliability
3.4. Technology Limitations
3.5. Future Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stewart, R.D.; Jian, J.; Gyawali, A.J.; Thomason, W.E.; Badgley, B.D.; Reiter, M.S.; Strickland, M.S. What We Talk about When We Talk about Soil Health. Agric. Environ. Lett. 2018, 3, 180033. [Google Scholar] [CrossRef]
- Gebara, C.H.; Thammaraksa, C.; Hauschild, M.; Laurent, A. Selecting indicators for measuring progress towards sustainable development goals at the global, national and corporate levels. Sustain. Prod. Consum. 2024, 44, 151–165. [Google Scholar] [CrossRef]
- Keeney, D. Sustainable Agriculture: Definition Concepts. J. Prod. Agric. 1990, 3, 281–285. [Google Scholar] [CrossRef]
- Lehman, H.; Clark, E.A.; Weise, S.F. Clarifying the definition of Sustainable agriculture. J. Agric. Environ. Ethics 1993, 6, 127–143. [Google Scholar] [CrossRef]
- Abenina, M.I.A.; Maja, J.M.; Cutulle, M.; Melgar, J.C.; Liu, H. Prediction of Potassium in Peach Leaves Using Hyperspectral Imaging and Multivariate Analysis. AgriEngineering 2022, 4, 400–413. [Google Scholar] [CrossRef]
- Kashyap, B.; Kumar, R. Sensing Methodologies in Agriculture for Soil Moisture and Nutrient Monitoring. IEEE Access 2021, 9, 14095–14121. [Google Scholar] [CrossRef]
- Peng, X.; Chen, D.; Zhou, Z.; Zhang, Z.; Xu, C.; Zha, Q.; Wang, F.; Hu, X. Prediction of the Nitrogen, Phosphorus and Potassium Contents in Grape Leaves at Different Growth Stages Based on UAV Multispectral Remote Sensing. Remote Sens. 2022, 14, 2659. [Google Scholar] [CrossRef]
- Ullo, S.L.; Sinha, G.R. Advances in IoT and Smart Sensors for Remote Sensing and Agriculture Applications. Remote Sens. 2021, 13, 2585. [Google Scholar] [CrossRef]
- Potdar, R.P.; Shirolkar, M.M.; Verma, A.J.; More, P.S.; Kulkarni, A. Determination of soil nutrients (NPK) using optical methods: A mini review. J. Plant Nutr. 2021, 44, 1826–1839. [Google Scholar] [CrossRef]
- Zedler, M.; Tse, S.W.; Ruiz-Gonzalez, A.; Haseloff, J. Paper-Based Multiplex Sensors for the Optical Detection of Plant Stress. Micromachines 2023, 14, 314. [Google Scholar] [CrossRef]
- Dai, C.; Song, P.; Wadhawan, J.D.; Fisher, A.C.; Lawrence, N.S. Screen Printed Alizarin-Based Carbon Electrodes: Monitoring pH in Unbuffered Media. Electroanalysis 2015, 27, 917–923. [Google Scholar] [CrossRef]
- Dudala, S.; Srikanth, S.; Dubey, S.K.; Javed, A.; Goel, S. Rapid Inkjet-Printed Miniaturized Interdigitated Electrodes for Electrochemical Sensing of Nitrite and Taste Stimuli. Micromachines 2021, 12, 1037. [Google Scholar] [CrossRef] [PubMed]
- Joly, M.; Marlet, M.; Durieu, C.; Bene, C.; Launay, J.; Temple-Boyer, P. Study of chemical field effect transistors for the detection of ammonium and nitrate ions in liquid and soil phases. Sens. Actuators B Chem. 2022, 351, 130949. [Google Scholar] [CrossRef]
- Tian, H.; Gao, C.; Zhang, X.; Yu, C.; Xie, T. Smart Soil Water Sensor with Soil Impedance Detected via Edge Electromagnetic Field Induction. Micromachines 2022, 13, 1427. [Google Scholar] [CrossRef]
- Han, P.J.; Zhang, Y.F.; Chen, F.Y.; Bai, X.H. Interpretation of electrochemical impedance spectroscopy (EIS) circuit model for soils. J. Cent. South Univ. 2015, 22, 4318–4328. [Google Scholar] [CrossRef]
- Lisdat, F.; Schäfer, D. The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 2008, 391, 1555–1567. [Google Scholar] [CrossRef]
- Zhao, X.; Zhuang, H.; Yoon, S.C.; Dong, Y.; Wang, W.; Zhao, W. Electrical impedance spectroscopy for quality assessment of meat fish: Areview on basic principles measurement methods recent advances. J. Food Qual. 2017, 2017, 6370739. [Google Scholar] [CrossRef]
- Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. DENSE: DiElectric Novel Soil Evaluation System to Electrochemically Profile Soil Matrices. J. Electrochem. Soc. 2022, 169, 67511. [Google Scholar] [CrossRef]
- Eldeeb, M.A.; Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. Electrochemical Soil Nitrate Sensor for In Situ Real-Time Monitoring. Micromachines 2023, 14, 1314. [Google Scholar] [CrossRef]
- Eldeeb, M.A.; Dhamu, V.N.; Paul, A.; Alam, F.M.; Burgos, E.N.; Muthukumar, S.; Prasad, S. ASSERT: A Platform Technology for Rapid Electrochemical Sensing of Soil Ammonium. ACS Omega 2024, 9, 33928–33934. [Google Scholar] [CrossRef]
- Banga, I.; Paul, A.; Muthukumar, S.; Prasad, S. Characterization of Room-Temperature Ionic Liquids to Study the Electrochemical Activity of Nitro Compounds. Sensors 2020, 20, 1124. [Google Scholar] [CrossRef] [PubMed]
- Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. Exploring the Role of Room Temperature Ionic Liquid as a Transducer in Electrochemical Soil Probing: Acase study with [BMIM] [BF4]. J. Electrochem. Soc. 2021, 168, 037505. [Google Scholar] [CrossRef]
- Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. Electrochemical framework for dynamic tracking of Soil Organic Matter. Biosens. Bioelectron. X 2024, 17, 100440. [Google Scholar] [CrossRef]
- Dhamu, V.N.; Muthukumar, S.; Prasad, S. E-SCAN: Electrochemical Scanning of Carbonates an In Situ Approach for Screening Quantifying Inorganic Carbon in Soil. J. Agric. Food Chem. 2023, 71, 15954–15962. [Google Scholar] [CrossRef] [PubMed]
- Grossman, R.B.; Reinsch, T.G. 2.1 Bulk Density and Linear Extensibility. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002; pp. 201–228. [Google Scholar] [CrossRef]
- Hao, X.; Ball, B.; Culley, J.; Carter, M.; Parkin, G. Soil Density Porosity. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 743–759. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; Soil Science Society of America: Madison, WI, USA, 2018; pp. 961–1010. [Google Scholar] [CrossRef]
- Bisutti, I.; Hilke, I.; Raessler, M. Determination of total organic carbon—An overview of current methods. TrAC Trends Anal. Chem. 2004, 23, 716–726. [Google Scholar] [CrossRef]
- Kerven, G.; Menzies, N.; Geyer, M. Soil carbon determination by high temperature combustion—A comparison with dichromate oxidation procedures and the influence of charcoal and carbonate carbon on the measured value. Commun. Soil Sci. Plant Anal. 2000, 31, 1935–1939. [Google Scholar] [CrossRef]
- Yeomans, J.C.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Paul, A.; Dhamu, V.N.; Muthukumar, S.; Prasad, S. E.P.A.S.S: Electroanalytical Pillbox Assessment Sensor System, A Case Study Using Metformin Hydrochloride. Anal. Chem. 2022, 94, 10617–10625. [Google Scholar] [CrossRef]
- Bokati, L.; Kumar, S.; Talchabadel, R.; Somenahally, A. Advancing Scalable Spatial and Temporal Predictions of Soil Organic Carbon. In Proceedings of the 2023 ASA, CSSA and SSSA International Annual Meetings, St Louis, MO, USA, 29 October–1 November 2023. [Google Scholar]
- Bokati, L.; Kumar, S.; Talchabadel, R.; Somenahally, A. Predicting Soil Organic Carbon and Essential Soil Parameter’s Using Remote Sensing: Implications on Regenerative Agriculture and Food Security. In Proceedings of the AGU Chapman Conference on Remote Sensing of the Water Cycle: Sensors to Science to Society, Honolulu, HI, USA, 13–16 February 2024. [Google Scholar]
- Rumpel, C.; Chabbi, A.; Marschner, B. Carbon Storage Sequestration in Subsoil Horizons: Knowledge Gaps Potentials. In Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle; Lal, R., Lorenz, K., Hüttl, R.F., Schneider, B.U., von Braun, J., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 445–464. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, W.; Li, H.; Huang, H.; Yang, L.; Zhang, L.; Meng, C.; Tian, D.; Zeng, H. Review—The ‘Real-Time’ Revolution for In situ Soil Nutrient Sensing. J. Electrochem. Soc. 2020, 167, 037569. [Google Scholar]
- Eldeeb, M.A.; Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. Espial: Electrochemical Soil pH Sensor for In Situ Real-Time Monitoring. Micromachines 2023, 14, 2188. [Google Scholar] [CrossRef] [PubMed]
- Dhamu, V.N.; Baby, D.; Eldeeb, M.; Muthukumar, S.; Prasad, S. In-SITE: In situ soil topological examination platform for hydration state, volumetric density and carbon stocks assessment. Biosens. Bioelectron. X 2024, 21, 100559. [Google Scholar] [CrossRef]
- Paul, A.; Eldeeb, M.A.; Dhamu, V.N.; Sharma, A.; Bohri, S.M.; Muthukumar, S.; Prasad, S. Quantitation of total soil carbon (TSC) using an electrochemical impedance probe. Meas. Sens. 2025, 39, 101875. [Google Scholar] [CrossRef]
Site Coordinator: Donald Danforth Plant Science Center | |||
---|---|---|---|
Location | St Charles, MO 63301, USA | ||
GPS Coordinates | 38.846968, −90.462104 | ||
Study Period | 7 November 2024 to 5 December 2024 | ||
Days | 28 | ||
# of Cycles | 84 | ||
Temperature range (°C) | −4 to 28 | ||
RH range (%) | 18–90 | ||
Soil type | Silt Loam | ||
Sensor’s Depth | 15 cm | ||
Parameter | Average | Std. dev. | CV (%) |
CSMs (SIC) (%) | 0.0 | 0.0027 | 5.5 |
SOM (%) | 1.92 | 0.021 | 1.1 |
TSC (SOC + SIC) (%) | 1.18 | 0.081 | 6.9 |
NO3 (ppm) | 4.44 | 0.89 | 20 |
NH4 (ppm) | 2.78 | 0.48 | 17 |
SVD (g/cm3) | 1.32 | 0.023 | 1.7 |
SHS (%) | 15.88 | 2.1 | 13 |
CSM (%) | SOM (%) | TSC (%) | Nitrate (ppm) | Ammonium (ppm) | SVD (g/cm3) | SHS (%) | |
---|---|---|---|---|---|---|---|
Minimum | 0.045 | 1.9 | 1.0 | 2.7 | 1.8 | 1.3 | 13 |
Maximum | 0.054 | 1.9 | 1.4 | 6.0 | 3.5 | 1.4 | 20 |
Range | 0.0090 | 0.090 | 0.36 | 3.3 | 1.6 | 0.070 | 6.7 |
Mean | 0.049 | 1.9 | 1.2 | 4.4 | 2.8 | 1.3 | 16 |
Std. Deviation | 0.0027 | 0.021 | 0.081 | 0.89 | 0.48 | 0.023 | 2.1 |
Std. Error of Mean | 0.00051 | 0.0039 | 0.015 | 0.17 | 0.090 | 0.0043 | 0.40 |
Coefficient of variation | 5.5% | 1.1% | 6.9% | 20% | 17% | 1.7% | 13% |
Parameter | Sensors-in-Field | Soil Lab. | Error Rate (%) * |
---|---|---|---|
CSM (SIC) (%) | 0.049 | 0.044 | 11.36 |
SOM (%) | 1.92 | 1.98 | 3.03 |
TSC (SOC + SIC) (%) | 1.18 | 1.19 | 0.84 |
NO3 (ppm) | 4.44 | 3.88 | 14.43 |
NH4 (ppm) | 2.78 | 2.46 | 13.01 |
SVD (g/cm3) | 1.32 | 1.32 | 0.21 |
SHS (%) | 15.88 | 15.42 | 2.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhamu, V.N.; Eldeeb, M.A.; Somenahally, A.C.; Muthukumar, S.; Prasad, S. SODS: Soil Health On-Demand Sensors—A Multi Parameter Field Study with Temporal Monitoring. Sensors 2025, 25, 3505. https://doi.org/10.3390/s25113505
Dhamu VN, Eldeeb MA, Somenahally AC, Muthukumar S, Prasad S. SODS: Soil Health On-Demand Sensors—A Multi Parameter Field Study with Temporal Monitoring. Sensors. 2025; 25(11):3505. https://doi.org/10.3390/s25113505
Chicago/Turabian StyleDhamu, Vikram Narayanan, Mohammed A. Eldeeb, Anil C. Somenahally, Sriram Muthukumar, and Shalini Prasad. 2025. "SODS: Soil Health On-Demand Sensors—A Multi Parameter Field Study with Temporal Monitoring" Sensors 25, no. 11: 3505. https://doi.org/10.3390/s25113505
APA StyleDhamu, V. N., Eldeeb, M. A., Somenahally, A. C., Muthukumar, S., & Prasad, S. (2025). SODS: Soil Health On-Demand Sensors—A Multi Parameter Field Study with Temporal Monitoring. Sensors, 25(11), 3505. https://doi.org/10.3390/s25113505