Classification of Electroencephalography Motor Execution Signals Using a Hybrid Neural Network Based on Instantaneous Frequency and Amplitude Obtained via Empirical Wavelet Transform
Abstract
Share and Cite
Zych, P.; Filipek, K.; Mrozek-Czajkowska, A.; Kuwałek, P. Classification of Electroencephalography Motor Execution Signals Using a Hybrid Neural Network Based on Instantaneous Frequency and Amplitude Obtained via Empirical Wavelet Transform. Sensors 2025, 25, 3284. https://doi.org/10.3390/s25113284
Zych P, Filipek K, Mrozek-Czajkowska A, Kuwałek P. Classification of Electroencephalography Motor Execution Signals Using a Hybrid Neural Network Based on Instantaneous Frequency and Amplitude Obtained via Empirical Wavelet Transform. Sensors. 2025; 25(11):3284. https://doi.org/10.3390/s25113284
Chicago/Turabian StyleZych, Patryk, Kacper Filipek, Agata Mrozek-Czajkowska, and Piotr Kuwałek. 2025. "Classification of Electroencephalography Motor Execution Signals Using a Hybrid Neural Network Based on Instantaneous Frequency and Amplitude Obtained via Empirical Wavelet Transform" Sensors 25, no. 11: 3284. https://doi.org/10.3390/s25113284
APA StyleZych, P., Filipek, K., Mrozek-Czajkowska, A., & Kuwałek, P. (2025). Classification of Electroencephalography Motor Execution Signals Using a Hybrid Neural Network Based on Instantaneous Frequency and Amplitude Obtained via Empirical Wavelet Transform. Sensors, 25(11), 3284. https://doi.org/10.3390/s25113284