Industrial-Grade Graphene Films as Distributed Temperature Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. GNP Strips Fabrication and Characterization
2.2. Operating Principles of the Sensing Element: Modeling the Impact of the Temperature on the Electrical Resistance
2.3. Experimental Setup for the Characterization of the Sensors
2.4. Sensor Model and Uncertainty Analysis
3. Results and Discussion
3.1. Preliminary Characterization and Calibration
3.2. Characterization of the Sensing Elements and Identification of the Resistance Model
3.3. Sensor Model Identification and Validation, and Uncertainty Analysis
4. Conclusions
- -
- The feasibility of temperature sensing using commercially available GNP-based coatings has been demonstrated.
- -
- A linear sensor model with quantified uncertainty has been proposed and validated.
- -
- The impact of humidity on the sensor’s performance has been quantified.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Hu, P.; Yu, G. Perspective of graphene-based electronic devices: Graphene synthesis and diverse applications. APL Mater. 2019, 7, 202901. [Google Scholar] [CrossRef]
- Esfandiari, M.; Lalbakhsh, A.; Shehni, P.N.; Jarchi, S.; Ghaffari-Miab, M.; Mahtaj, H.N.; Reisenfeld, S.; Alibakhshikenari, M.; Koziel, S.; Szczepanski, S. Recent and emerging applications of Graphene-based metamaterials in electromagnetics. Mater. Des. 2022, 221, 110920. [Google Scholar] [CrossRef]
- Ares, P.; Novoselov, K.S. Recent advances in graphene and other 2D materials. Nano Mater. Sci. 2022, 4, 3–9. [Google Scholar] [CrossRef]
- Huang, H.; Shi, H.; Das, P.; Qin, J.; Li, Y.; Wang, X.; Su, F.; Wen, P.; Li, S.; Lu, P.; et al. The chemistry and promising applications of graphene and porous graphene materials. Adv. Funct. Mater. 2020, 30, 1909035. [Google Scholar] [CrossRef]
- Song, S.; Shen, H.; Wang, Y.; Chu, X.; Xie, J.; Zhou, N.; Shen, J. Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids Surf. B Biointerfaces 2020, 185, 110596. [Google Scholar] [CrossRef]
- Karthik, V.; Selvakumar, P.; Senthil Kumar, P.; Vo, D.V.N.; Gokulakrishnan, M.; Keerthana, P.; Tamil Elakkiya, V.; Rajeswari, R. Graphene-based materials for environmental applications: A review. Environ. Chem. Lett. 2021, 19, 3631–3644. [Google Scholar] [CrossRef]
- Razaq, A.; Bibi, F.; Zheng, X.; Papadakis, R.; Jafri, S.H.M.; Li, H. Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications. Materials 2022, 15, 1012. [Google Scholar] [CrossRef]
- Yu, X.; Cheng, H.; Zhang, M.; Zhao, Y.; Qu, L.; Shi, G. Graphene-based smart materials. Nat. Rev. Mater. 2017, 2, 17046. [Google Scholar] [CrossRef]
- Zhu, Y.; Ji, H.; Cheng, H.M.; Ruoff, R.S. Mass production and industrial applications of graphene materials. Natl. Sci. Rev. 2018, 5, 90–101. [Google Scholar] [CrossRef]
- Kovtun, A.; Treossi, E.; Mirotta, N.; Scidà, A.; Liscio, A.; Christian, M.; Valorosi, F.; Boschi, A.; Young, R.J.; Galiotis, C.; et al. Benchmarking of graphene-based materials: Real commercial products vs. ideal graphene. 2D Mater. 2019, 6, 025006. [Google Scholar] [CrossRef]
- Ferreira, A.D.B.; Nóvoa, P.R.; Marques, A.T. Multifunctional Material Systems: A state-of-the-art review. Compos. Struct. 2016, 151, 3–35. [Google Scholar] [CrossRef]
- Sattar, T. Current review on synthesis, composites and multifunctional properties of graphene. Top. Curr. Chem. 2019, 377, 1–45. [Google Scholar] [CrossRef]
- Sánchez-Romate, X.F.; Sans, A.; Jiménez-Suárez, A.; Campo, M.; Ureña, A.; Prolongo, S.G. Highly multifunctional GNP/epoxy nanocomposites: From strain-sensing to joule heating applications. Nanomaterials 2020, 10, 2431. [Google Scholar] [CrossRef]
- Cataldi, P.; Athanassiou, A.; Bayer, I.S. Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl. Sci. 2018, 8, 1438. [Google Scholar] [CrossRef]
- Wu, H.; Drzal, L.T. Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon 2012, 50, 1135–1145. [Google Scholar] [CrossRef]
- Jiménez-Suárez, A.; Prolongo, S.G. Graphene nanoplatelets. Appl. Sci. 2020, 10, 1753. [Google Scholar] [CrossRef]
- Siow, L.T.; Lee, J.R.; Ooi, E.H.; Von Lau, E. Application of graphene and graphene derivatives in cooling of photovoltaic (PV) solar panels: A review. Renew. Sustain. Energy Rev. 2024, 193, 114288. [Google Scholar] [CrossRef]
- Del Rio Castilloa, A.E.; Pellegrini, V.; Ansaldo, A.; Ricciardell, F.; Sun, H.; Marasco, L.; Buha, J.; Dang, Z.; Gagliani, L.; Lago, E.; et al. High-yield production of 2d crystals by wet-jet milling. Mater. Horiz. 2018, 5, 809–904. [Google Scholar] [CrossRef]
- Sellathurai, A.J.; Mypati, S.; Kontopoulou, M.; Barz, D.P.J. High yields of graphene nanoplatelets by liquid phase exfoliation using graphene oxide as a stabilizer. Chem. Eng. J. 2023, 451, 138365. [Google Scholar] [CrossRef]
- Maffucci, A.; Micciulla, F.; Cataldo, A.; Miano, G.; Bellucci, S. Bottom-up Realization and Electrical Characterization of a Graphene-Based Device. Nanotechnology 2016, 27, 095204. [Google Scholar] [CrossRef]
- Davaji, B.; Teymourian, H.; Malakoutian, M.; Lee, C. A patterned single-layer graphene resistance temperature sensor. Sci. Rep. 2017, 7, 8811. [Google Scholar] [CrossRef]
- Irfan, M.; Khan, Y.; Rehman, A.U.; Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Plasmonic Refractive Index and Temperature Sensor Based on Graphene and LiNbO3. Sensors 2022, 22, 7790. [Google Scholar] [CrossRef]
- Štulík, J.; Musil, O.; Josefík, F.; Kadlec, P. Graphene-Based Temperature Sensors-Comparison of the Temperature and Humidity Dependences. Nanomaterials 2022, 12, 1594. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, C.; Yu, C.; Li, Y.; Guo, X.; Zhang, Y.; Chen, C.; Cao, L. High-linearity graphene-based temperature sensor fabricated by laser writing. J. Mater. Sci. Mater. Electron. 2024, 35, 109. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, T.; Yao, Y.; Li, T.; Hu, L.; Marconnet, A. Thermally conductive reduced graphene oxide thin films for extreme temperature sensors. Adv. Funct. Mater. 2019, 29, 1901388. [Google Scholar] [CrossRef]
- Huang, J.; Yang, X.; Her, S.-C.; Liang, Y.-M. Carbon Nanotube/Graphene Nanoplatelet Hybrid Film as a Flexible Multifunctional Sensor. Sensors 2019, 19, 317. [Google Scholar] [CrossRef]
- Liu, H.; Sun, K.; Guo, X.L.; Liu, Z.L.; Wang, Y.H.; Yang, Y.; Yu, D.; Li, Y.T.; Ren, T.L. An Ultrahigh Linear Sensitive Temperature Sensor Based on PANI: Graphene and PDMS Hybrid with Negative Temperature Compensation. ACS Nano 2022, 16, 21527–21535. [Google Scholar] [CrossRef]
- Toral, V.; Houeix, Y.; Gerardo, D.; Blasco-Pascual, I.; Rivadeneyra, A.; Romero, F.J. Graphene-enabled wearable for remote ecg and body temperature monitoring. IEEE J. Flex. Electron. 2024, 3, 159–168. [Google Scholar] [CrossRef]
- Nanesa Srl, Rome, Italy. Available online: www.nanesa.it (accessed on 16 March 2025).
- Owais, M.; Zhao, J.; Imani, A.; Wang, G.; Zhang, H.; Zhang, Z. Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Compos. Part A Appl. Sci. Manuf. 2019, 117, 11–22. [Google Scholar] [CrossRef]
- Anwar, Z.; Kausar, A.; Rafique, I.; Muhammad, B. Advances in epoxy/graphene nanoplatelet composite with enhanced physical properties: A review. Polym.-Plast. Technol. Eng. 2016, 55, 643–662. [Google Scholar] [CrossRef]
- Sutar, H.; Mishra, B.; Senapati, P.; Murmu, R.; Sahu, D. Mechanical, Thermal, and Morphological Properties of Graphene Nanoplatelet-Reinforced Polypropylene Nanocomposites: Effects of Nanofiller Thickness. J. Compos. Sci. 2021, 5, 24. [Google Scholar] [CrossRef]
- Ravindran, A.R.; Feng, C.; Huang, S.; Wang, Y.; Zhao, Z.; Yang, J. Effects of Graphene Nanoplatelet Size and Surface Area on the AC Electrical Conductivity and Dielectric Constant of Epoxy Nanocomposites. Polymers 2018, 10, 477. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Jorio, A.; Souza Filho, A.G.; Saito, R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 5355–5377. [Google Scholar] [CrossRef]
- Beams, R.; Cançado, L.G.; Novotny, L. Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter 2015, 27, 083002. [Google Scholar] [CrossRef]
- Sibilia, S.; Bertocchi, F.; Chiodini, S.; Cristiano, F.; Ferrigno, L.; Giovinco, G.; Maffucci, A. Temperature-dependent electrical resistivity of macroscopic graphene nanoplatelet strips. Nanotechnology 2021, 32, 275701. [Google Scholar] [CrossRef]
- Lahbacha, K.; Sibilia, S.; Trezza, G.; Giovinco, G.; Bertocchi, F.; Chiodini, S.; Cristiano, F.; Maffucci, A. Electro-thermal Parameters of Graphene Nano-Platelets Films for De-Icing Applications. Aerospace 2022, 9, 107. [Google Scholar] [CrossRef]
- Giovinco, G.; Sibilia, S.; Maffucci, A. Characterization of the thermal conductivity and diffusivity of graphene nanoplatelets strips: A low-cost technique. Nanotechnology 2023, 34, 345703. [Google Scholar] [CrossRef]
- Oskouyi, A.B.; Sundararaj, U.; Mertiny, P. Effect of temperature on electrical resistivity of carbon nanotubes and graphene nanoplatelets nanocomposites. J. Nanotechnol. Eng. Med. 2014, 5, 044501. [Google Scholar] [CrossRef]
- Bilisik, K.; Akter, M. Polymer nanocomposites based on graphite nanoplatelets (GNPs): A review on thermal-electrical conductivity, mechanical and barrier properties. J. Mater. Sci. 2022, 57, 7425–7480. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, J.; Chen, X.; Weng, G.J. Calculating the Electrical Conductivity of Graphene Nanoplatelet Polymer Composites by a Monte Carlo Method. Nanomaterials 2020, 10, 1129. [Google Scholar] [CrossRef]
- Maffucci, A. Carbon interconnects. In Nanopackaging, Nanotechnologies and Electronics Packaging; Morris, J., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 725–774. [Google Scholar]
- Forestiere, C.; Maffucci, A.; Miano, G. Hydrodynamic model for the signal propagation along carbon nanotubes. J. Nanophotonics 2010, 4, 041695. [Google Scholar] [CrossRef]
- Forestiere, C.; Maffucci, A.; Miano, G. On the Evaluation of the Number of Conducting Channels in Multiwall Carbon Nanotubes. IEEE Trans. Nanotechnol. 2011, 10, 1221–1223. [Google Scholar] [CrossRef]
- Maffucci, A.; Miano, G. Number of Conducting Channels for Armchair and Zig-Zag Graphene Nanoribbon Interconnects. IEEE Trans. Nanotechnol. 2013, 12, 817–823. [Google Scholar] [CrossRef]
- Maffucci, A.; Micciulla, F.; Cataldo, A.; Miano, G.; Bellucci, S. Modeling, Fabrication, and Characterization of Large Carbon Nanotube Interconnects with Negative Temperature Coefficient of the Resistance. IEEE Trans. Compon. Packag. Manuf. 2017, 7, 485–493. [Google Scholar] [CrossRef]
- Zhao, S.; Lou, D.; Zhan, P.; Li, G.; Dai, K.; Guo, J.; Zheng, G.; Liu, C.; Shen, C.; Guo, Z. Heating-induced negative temperature coefficient effect in conductive graphene/polymer ternary nanocomposites with a segregated and double-percolated structure. J. Mater. Chem. C 2017, 32, 8233–8242. [Google Scholar] [CrossRef]
- Carotenuto, A.; Giovinco, G.; Viglietti, B.; Vanoli, L. A new procedure for the determination of calibration curves for a gas chromatograph used in natural gas analysis. Chemom. Intell. Lab. Syst. 2005, 75, 209–217. [Google Scholar] [CrossRef]
Material | %GNPs | Binder | Thickness (µm) | Length (cm) | Width (cm) |
---|---|---|---|---|---|
G-PREG (95/5) | 95 | Polyurethane 5% | 94 | 10 | 1 |
G-PREG (70/30) | 70 | Epoxy 30% | 85 | 10 | 1 |
G-PREG (50/50) | 47.5 | Boron nitride 47.5%, Polyurethane 5% | 100 | 10 | 1 |
Material | # STRIP | Resistance 2W [Ω] | Resistance 4W [Ω] | Contact Resistance [Ω] | Contact Resistance/ Resistance 4W [%] |
---|---|---|---|---|---|
G-PREG (95/5) | 1 | 1.62 | 1.20 | 0.42 | 35.00 |
2 | 1.73 | 1.23 | 0.50 | 40.65 | |
3 | 1.69 | 1.21 | 0.48 | 39.66 | |
G-PREG (70/30) | 1 | 2.89 | 2.26 | 0.63 | 27.87 |
2 | 2.61 | 2.04 | 0.57 | 27.94 | |
3 | 2.85 | 2.22 | 0.63 | 28.37 | |
G-PREG (50/50) | 1 | 4.23 | 3.43 | 0.80 | 23.32 |
2 | 4.40 | 3.56 | 0.84 | 23.59 | |
3 | 4.09 | 3.35 | 0.74 | 22.08 |
R | uB (R) | uA (R) | T | uB (T) | uA (T) |
---|---|---|---|---|---|
(Ω) | (Ω) | (Ω) | (°C) | (°C) | (°C) |
3.804 | 0.000 | 0.004 | −40.030 | 0.014 | 0.230 |
3.758 | 0.001 | 0.004 | −29.760 | 0.029 | 0.230 |
3.704 | 0.001 | 0.004 | −19.480 | 0.053 | 0.230 |
3.652 | 0.000 | 0.004 | −9.350 | 0.055 | 0.230 |
3.608 | 0.000 | 0.004 | −0.060 | 0.021 | 0.230 |
3.563 | 0.000 | 0.004 | 10.070 | 0.014 | 0.230 |
3.521 | 0.000 | 0.004 | 20.280 | 0.044 | 0.230 |
3.485 | 0.000 | 0.004 | 30.070 | 0.040 | 0.230 |
3.453 | 0.000 | 0.004 | 40.030 | 0.028 | 0.230 |
3.406 | 0.000 | 0.004 | 50.290 | 0.026 | 0.230 |
3.360 | 0.000 | 0.004 | 60.100 | 0.000 | 0.230 |
Material | # STRIP | Max Hysteresis Error [%] |
---|---|---|
G-PREG (95/5) | 1 | 0.69 |
2 | 1.17 | |
3 | 0.51 | |
G-PREG (70/30) | 1 | 0.24 |
2 | 0.57 | |
3 | 0.26 | |
G-PREG (50/50) | 1 | 0.52 |
2 | 0.68 | |
3 | 0.53 |
Material | Relative Uncertainty [%] |
---|---|
G-PREG (50/50) | 0.13 |
G-PREG (70/30) | 0.21 |
G-PREG (95/5) | 0.36 |
R | u (R) | T | u (T) | Rpred | Tpred | u (Tpred) |
---|---|---|---|---|---|---|
(Ω) | (Ω) | (°C) | (°C) | (Ω) | (°C) | (°C) |
3.899 | 0.004 | −40.03 | 0.230 | 3.900 | −42.19 | 2.923 |
3.794 | 0.004 | −20.24 | 0.230 | 3.790 | −21.16 | 2.922 |
3.683 | 0.004 | −0.06 | 0.230 | 3.680 | 0.94 | 2.922 |
3.583 | 0.004 | 20.28 | 0.230 | 3.580 | 21.01 | 2.922 |
3.485 | 0.004 | 39.71 | 0.230 | 3.480 | 40.57 | 2.922 |
3.399 | 0.004 | 60.10 | 0.230 | 3.400 | 57.74 | 2.923 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siconolfi, F.; Cavaliere, G.; Sibilia, S.; Cristiano, F.; Giovinco, G.; Maffucci, A. Industrial-Grade Graphene Films as Distributed Temperature Sensors. Sensors 2025, 25, 3227. https://doi.org/10.3390/s25103227
Siconolfi F, Cavaliere G, Sibilia S, Cristiano F, Giovinco G, Maffucci A. Industrial-Grade Graphene Films as Distributed Temperature Sensors. Sensors. 2025; 25(10):3227. https://doi.org/10.3390/s25103227
Chicago/Turabian StyleSiconolfi, Francesco, Gabriele Cavaliere, Sarah Sibilia, Francesco Cristiano, Gaspare Giovinco, and Antonio Maffucci. 2025. "Industrial-Grade Graphene Films as Distributed Temperature Sensors" Sensors 25, no. 10: 3227. https://doi.org/10.3390/s25103227
APA StyleSiconolfi, F., Cavaliere, G., Sibilia, S., Cristiano, F., Giovinco, G., & Maffucci, A. (2025). Industrial-Grade Graphene Films as Distributed Temperature Sensors. Sensors, 25(10), 3227. https://doi.org/10.3390/s25103227