Fabrication of a Fully Printed Ammonia Gas Sensor Based on ZnO/rGO Using Ultraviolet–Ozone Treatment
Abstract
:1. Introduction
2. Experiment
2.1. Preparation of ZnO/GO Composites and Characterization
2.2. Fabrication of Gas Sensor
2.3. Measurements
3. Results
3.1. Structural and Morphological Characteristics
3.2. Electrical Properties
3.3. Gas Sensing Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Campos Bernardi, A.C.; Polidoro, J.C.; de Melo Monte, M.B.; Pereira, E.I.; de Oliveira, C.R.; Ramesh, K. Enhancing nutrient use efficiency using zeolites minerals—A review. Adv. Chem. Eng. Sci. 2016, 6, 295. [Google Scholar] [CrossRef]
- Du, S.; Wang, R.Z.; Lin, P.; Xu, Z.Z.; Pan, Q.W.; Xu, S.C. Experimental studies on an air-cooled two-stage NH3-H2O solar absorption air-conditioning prototype. Energy 2012, 45, 581–587. [Google Scholar] [CrossRef]
- Kumwiba, M.N.; Meng, F. Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: A review. Sci. Total Environ. 2019, 659, 419–441. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Choi, J.; Kong, J.; Kim, H.; Yoo, S.J.; Park, H.S. Regenerative electrocatalytic redox cycle of copper sulfide for sustainable NH3 production under ambient conditions. ACS Catal. 2020, 11, 435–445. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; Song, P.; Ji, J.; Wang, Q. Metal-organic frameworks-derived In2O3 microtubes/Ti3C2Tx MXene composites for NH3 detection at room temperature. Sens. Actuators B Chem. 2022, 361, 131755. [Google Scholar] [CrossRef]
- Singh, A.K.; Pandey, A.; Chakrabarti, P. Poly [2, 5-bis (3-tetradecylthiophen-2-yl) thieno [3, 2-b] thiophene] organic polymer based-interdigitated channel enabled thin film transistor for detection of selective low ppm ammonia sensing at 25 °C. IEEE Sens. J. 2019, 20, 4047–4055. [Google Scholar] [CrossRef]
- Padappayil, R.P.; Borger, J. Ammonia toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Zhang, H.; Ji, W.; Li, X.; Feng, Y.; Wang, J.; Liu, H.; Bao, J. Immunosuppression, oxidative stress, and apoptosis in pig kidney caused by ammonia: Application of transcriptome analysis in risk assessment of ammonia exposure. Toxicol. Appl. Pharmacol. 2021, 428, 115675. [Google Scholar] [CrossRef]
- Sutton, M.A.; Fowler, D. Introduction: Fluxes and impacts of atmospheric ammonia on national, landscape and farm scales. Environ. Pollut. 2002, 119, 7–8. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (Atsdr). Medical Management Guidelines for Ammonia; US Department of Health and Human Services: Washington, DC, USA, 2017.
- Bielecki, Z.; Stacewicz, T.; Smulko, J.; Wojtas, J. Ammonia gas sensors: Comparison of solid-state and optical methods. Appl. Sci. 2020, 10, 5111. [Google Scholar] [CrossRef]
- Ismail, A.H.; Sulaiman, Y. Review on the utilisation of sensing materials for intrinsic optical NH3 gas sensors. Synth. Met. 2021, 280, 116860. [Google Scholar] [CrossRef]
- Gavaskar, D.S.; Nagaraju, P.; Vijayakumar, Y.; Reddy, P.S.; Ramana Reddy, M.V. Low-cost ultra-sensitive SnO2-based ammonia sensor synthesized by hydrothermal method. J. Asian Ceram. Soc. 2020, 8, 605–614. [Google Scholar] [CrossRef]
- Ozutok, F.; Karaduman, I.; Demiri, S.; Acar, S. Influence of different aluminum sources on the NH3 gas-sensing properties of ZnO thin films. J. Electron. Mater. 2018, 47, 2648–2657. [Google Scholar] [CrossRef]
- Yeh, Y.M.; Chang, S.J.; Wang, P.H.; Hsueh, T.J. A Room-temperature TiO2-based ammonia gas sensor with three-dimensional through-silicon-via structure. ECS J. Solid State Sci. Technol. 2022, 11, 067002. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Song, P.; Yang, Z.; Wang, Q. Metal-organic framework-derived Cr-doped hollow In2O3 nanoboxes with excellent gas-sensing performance toward ammonia. J. Alloys Compd. 2021, 879, 160472. [Google Scholar] [CrossRef]
- Hjiri, M.; Dhahri, R.; Omri, K.; El Mir, L.; Leonardi, S.G.; Donato, N.; Neri, G. Effect of indium doping on ZnO based-gas sensor for CO. Mater. Sci. Semicond. Process. 2014, 27, 319–325. [Google Scholar] [CrossRef]
- Mariappan, R.; Ponnuswamy, V.; Suresh, P.; Ashok, N.; Jayamurugan, P.; Bose, A.C. Influence of film thickness on the properties of sprayed ZnO thin films for gas sensor applications. Superlattices Microstruct. 2014, 71, 238–249. [Google Scholar] [CrossRef]
- Ravichandran, K.; Manivasaham, A.; Subha, K.; Chandrabose, A.; Mariappan, R. Cost-effective nebulizer sprayed ZnO thin films for enhanced ammonia gas sensing–Effect of deposition temperature. Surf. Interfaces 2016, 1, 13–20. [Google Scholar] [CrossRef]
- Liu, I.P.; Chang, C.H.; Chou, T.C.; Lin, K.W. Ammonia sensing performance of a platinum nanoparticle-decorated tungsten trioxide gas sensor. Sens. Actuators B Chem. 2019, 291, 148–154. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Bag, A.; Moon, D.B.; Park, K.H.; Cho, C.Y.; Lee, N.E. Room-temperature-operated fast and reversible vertical-heterostructure-diode gas sensor composed of reduced graphene oxide and AlGaN/GaN. Sens. Actuators B Chem. 2019, 296, 126684. [Google Scholar] [CrossRef]
- Moon, D.B.; Bag, A.; Lee, H.B.; Meeseepong, M.; Lee, D.H.; Lee, N.E. A stretchable, room-temperature operable, chemiresistive gas sensor using nanohybrids of reduced graphene oxide and zinc oxide nanorods. Sens. Actuators B Chem. 2021, 345, 130373. [Google Scholar] [CrossRef]
- McAllister, M.J.; Li, J.L.; Adamson, D.H.; Schniepp, H.C.; Abdala, A.A.; Liu, J.; Herrera-Alonso, M.; Milius, D.L.; Car, R.; Prud’homme, R.K.; et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404. [Google Scholar] [CrossRef]
- Xia, Y.; Pan, Y.; Zhang, H.; Qiu, J.; Zheng, Y.; Chen, Y.; Huang, W. Graphene oxide by UV-ozone treatment as an efficient hole extraction layer for highly efficient and stable polymer solar cells. ACS Appl. Mater. Interfaces 2017, 9, 26252–26256. [Google Scholar] [CrossRef]
- Rafique, S.; Abdullah, S.M.; Iqbal, J.; Jilani, A.; Vattamkandathil, S.; Iwamoto, M. Moderately reduced graphene oxide via UV-ozone treatment as hole transport layer for high efficiency organic solar cells. Org. Electron. 2018, 59, 140–148. [Google Scholar] [CrossRef]
- Lei, Y.; Zhao, Y.; Zhang, Q.; Xiong, Z.; Chen, L. Highly efficient and bright red quantum dot light-emitting diodes with balanced charge injection. Org. Electron. 2020, 81, 105683. [Google Scholar] [CrossRef]
- Lee, H.; Cho, N.-J.; Kim, D.S. Development of a Novel Reverse Offset Printer Equipped with Double-Layer Blanket (DLB) for Micropattern Printing on 3D Curved Surfaces. Processes 2022, 10, 424. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, D.S. Development of spray thin film coating method using an air pressure and electrostatic force. J. Korean Soc. Precis. Eng. 2013, 30, 567–572. [Google Scholar] [CrossRef]
- Majidi, S.; Jaleh, B.; Feizi Mohazzab, B.; Moradi, A. Wettability of Graphene Oxide/Zinc Oxide Nanocomposite on Aluminum Surface Switching by UV Irradiation and Low Temperature Annealing. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3073–3083. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Alsyahi, A.A.; Alshammari, S.G.; Al-Abdulkarim, H.A.; AlFawaz, A.; Alsalme, A. Synthesis and characterization of rGO@ ZnO nanocomposites for esterification of acetic acid. ACS Omega 2022, 7, 2786–2797. [Google Scholar] [CrossRef]
- Singh, R.; Rakesh, R.; Kumar, A.; Kumar, D.; Kumar, M. Low power and stable resistive switching in graphene oxide-based RRAM embedded with ZnO nanoparticles for nonvolatile memory applications. J. Mater. Sci. Mater. Electron. 2021, 32, 17545–17557. [Google Scholar] [CrossRef]
- Prema, D.; Balashanmugam, P.; Kumar, J.S.; Venkatasubbu, G.D. Fabrication of GO/ZnO nanocomposite incorporated patch for enhanced wound healing in streptozotocin (STZ) induced diabetic rats. Colloids Surf. A Physicochem. Eng. Asp. 2022, 649, 129331. [Google Scholar] [CrossRef]
- Trinh, L.T.; Quynh, L.A.B.; Hieu, N.H. Synthesis of zinc oxide/graphene oxide nanocomposite material for antibacterial application. Int. J. Nanotechnol. 2018, 15, 108–117. [Google Scholar] [CrossRef]
- Safa, S.; Sarraf-Mamoory, R.; Azmirad, R. Investigation of reduced graphene oxide effects on ultra-violet detection of ZnO thin film. Phys. E Low-Dimens. Syst. Nanostructures 2014, 57, 155–160. [Google Scholar] [CrossRef]
- Singhal, N.; Selvaraj, S.; Sivalingam, Y.; Venugopal, G. Study of photocatalytic degradation efficiency of rGO/ZnO nano-photocatalyst and their performance analysis using scanning Kelvin probe. J. Environ. Chem. Eng. 2020, 10, 107293. [Google Scholar] [CrossRef]
- Darmstadt, H.; Roy, C. Surface spectroscopic study of basic sites on carbon blacks. Carbon 2005, 41, 2662–2665. [Google Scholar] [CrossRef]
- Vatandoust, L.; Habibi, A.; Naghshara, H.; Aref, S.M. Fabrication of ZnO-MWCNT nanocomposite sensor and investigation of its ammonia gas sensing properties at room temperature. Synth. Met. 2021, 273, 116710. [Google Scholar] [CrossRef]
- Tai, H.; Yuan, Z.; Zheng, W.; Ye, Z.; Liu, C.; Du, X. ZnO nanoparticles/reduced graphene oxide bilayer thin films for improved NH3-sensing performances at room temperature. Nanoscale Res. Lett. 2016, 11, 130. [Google Scholar] [CrossRef]
- Ghosh, R.; Midya, A.; Santra, S.; Ray, S.K.; Guha, P.K. Chemically reduced graphene oxide for ammonia detection at room temperature. ACS Appl. Mater. Interfaces 2013, 5, 7599–7603. [Google Scholar] [CrossRef]
- Garg, N.; Kumar, M.; Kumari, N.; Deep, A.; Sharma, A.L. Chemoresistive room-temperature sensing of ammonia using zeolite imidazole framework and reduced graphene oxide (ZIF-67/rGO) composite. ACS Omega 2020, 5, 27492–27501. [Google Scholar] [CrossRef]
- Jeevitha, G.; Abhinayaa, R.; Mangalaraj, D.; Ponpandian, N.; Meena, P.; Mounasamy, V.; Madanagurusamy, S. Porous reduced graphene oxide (rGO)/WO3 nanocomposites for the enhanced detection of NH3 at room temperature. Nanoscale Adv. 2019, 1, 1799–1811. [Google Scholar] [CrossRef]
- Mathew, M.; Shinde, P.V.; Samal, R.; Rout, C.S. A review on mechanisms and recent developments in pn heterojunctions of 2D materials for gas sensing applications. J. Mater. Sci. 2021, 56, 9575–9604. [Google Scholar] [CrossRef]
Materials | Type | Concentration (ppm) | Operating Level (°C) | Response | Fabrication Method | Reduction Method | References |
---|---|---|---|---|---|---|---|
ZnO | Metal oxide | 250 | 400 | 1.82 | Sputtering and nebulizer spray pyrolysis | [18] | |
rGO | Conducting polymer | 200 | RT | 5.5 | Deposition and dip coating | Chemical reduction | [38] |
ZnO-MWCNT | Heterojunction | 10 | RT | 1.022 | Sputtering and chemical pyrolysis spray | [39] | |
ZIF/rGO | Heterojunction | 50 | RT | 4.77 | DropSens and dropcast | Chemical reduction | [40] |
rGO/WO3 | Heterojunction | 40 | 35 | 8.03 | Spin coating | Chemical reduction | [41] |
ZnO/rGO | Heterojunction | 50 | RT | 3.05 | Thermal evaporation and spray coating | Thermal reduction | [42] |
ZnO/rGO | Heterojunction | 50 | RT | 10.96 | Fully printing (reverse offset and electrostatic spray deposition) | UV-ozone reduction | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Won, M.; Sim, J.; Oh, G.; Jung, M.; Mantry, S.P.; Kim, D.-s. Fabrication of a Fully Printed Ammonia Gas Sensor Based on ZnO/rGO Using Ultraviolet–Ozone Treatment. Sensors 2024, 24, 1691. https://doi.org/10.3390/s24051691
Won M, Sim J, Oh G, Jung M, Mantry SP, Kim D-s. Fabrication of a Fully Printed Ammonia Gas Sensor Based on ZnO/rGO Using Ultraviolet–Ozone Treatment. Sensors. 2024; 24(5):1691. https://doi.org/10.3390/s24051691
Chicago/Turabian StyleWon, Mijin, Jaeho Sim, Gyeongseok Oh, Minhun Jung, Snigdha Paramita Mantry, and Dong-soo Kim. 2024. "Fabrication of a Fully Printed Ammonia Gas Sensor Based on ZnO/rGO Using Ultraviolet–Ozone Treatment" Sensors 24, no. 5: 1691. https://doi.org/10.3390/s24051691
APA StyleWon, M., Sim, J., Oh, G., Jung, M., Mantry, S. P., & Kim, D.-s. (2024). Fabrication of a Fully Printed Ammonia Gas Sensor Based on ZnO/rGO Using Ultraviolet–Ozone Treatment. Sensors, 24(5), 1691. https://doi.org/10.3390/s24051691