Low-Cost Sensor Deployment on a Public Minibus in Fukushima Prefecture
Abstract
:1. Introduction
2. Material and Methods
2.1. Radiation Monitoring System
2.2. Shielding Factor
2.3. Ambient Dose Mapping Based on Land Use Classification
2.4. Ecological Half-Life Decay
3. Results and Discussion
3.1. Shielding Factor
3.2. Mapping of Ambient Dose Rate
3.3. Ecological Half-Life and Land Use Classification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Level | - Level | Difference | Standard Error of Difference | p-Value |
---|---|---|---|---|
Forest | Bare land | 0.0200298 | 0.0071811 | 0.0053 * |
Forest | Urban | 0.0191783 | 0.0070729 | 0.0067 * |
Crop | Bare land | 0.0188244 | 0.0019880 | <0.0001 * |
Crop | Urban | 0.0179728 | 0.0015521 | <0.0001 * |
Rice paddy | Bare land | 0.0168394 | 0.0132391 | 0.2035 |
Rice paddy | Urban | 0.0159878 | 0.0131807 | 0.2252 |
Grassland | Bare land | 0.0101727 | 0.0038620 | 0.0085 * |
Forest | Grassland | 0.0098571 | 0.0078937 | 0.2119 |
Grassland | Urban | 0.0093211 | 0.0036568 | 0.0109 * |
Crop | Grassland | 0.0086517 | 0.0038333 | 0.0241 * |
Rice paddy | Grassland | 0.0066667 | 0.0136388 | 0.6250 |
Forest | Rice paddy | 0.0031905 | 0.0149221 | 0.8307 |
Crop | Rice paddy | 0.0019850 | 0.0132308 | 0.8807 |
Forest | Crop | 0.0012054 | 0.0071657 | 0.8664 |
Urban | Bare land | 0.0008516 | 0.0016217 | 0.5996 |
Level | - Level | Difference | Standard Error of Difference | p-Value |
---|---|---|---|---|
Rice paddy | Urban | 0.0200298 | 0.0071811 | 0.0011 * |
Forest | Urban | 0.0191783 | 0.0070729 | 0.0002 * |
Crop | Urban | 0.0188244 | 0.0019880 | <0.0001 * |
Bare land | Urban | 0.0179728 | 0.0015521 | <0.0001 * |
Grassland | Urban | 0.0168394 | 0.0132391 | <0.0001 * |
Rice paddy | Solar Panel | 0.0159878 | 0.0131807 | 0.2820 |
Solar Panel | Urban | 0.0101727 | 0.0038620 | 0.2942 |
Rice paddy | Grassland | 0.0098571 | 0.0078937 | 0.1984 |
Rice paddy | Bare land | 0.0093211 | 0.0036568 | 0.2051 |
Rice paddy | Crop | 0.0086517 | 0.0038333 | 0.2164 |
Rice paddy | Forest | 0.0066667 | 0.0136388 | 0.3309 |
Forest | Solar Panel | 0.0031905 | 0.0149221 | 0.6344 |
Crop | Solar Panel | 0.0019850 | 0.0132308 | 0.6729 |
Bare land | Solar Panel | 0.0012054 | 0.0071657 | 0.6941 |
Grassland | Solar Panel | 0.0008516 | 0.0016217 | 0.7187 |
Forest | Grassland | 0.0007139 | 0.0021686 | 0.7420 |
Forest | Bare land | 0.0005701 | 0.0020681 | 0.7828 |
Forest | Crop | 0.0004371 | 0.0020352 | 0.8299 |
Crop | Grassland | 0.0002767 | 0.0009560 | 0.7722 |
Bare land | Grassland | 0.0001437 | 0.0010242 | 0.8884 |
Crop | Bare land | 0.0001330 | 0.0006987 | 0.8490 |
References
- Britannica. Fukushima Accident. Available online: https://www.britannica.com/event/Fukushima-accident (accessed on 3 February 2024).
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Volume I: Report to the General Assembly Scientific Annex A: Levels and Effects of Radiation Exposure Due to the Nuclear Accident after the 2011 Great East-Japan Earthquake and Tsunami. Available online: https://www.unscear.org/unscear/en/publications/2013_1.html (accessed on 3 February 2024).
- Joffrion, J.B.; Mills, D.; Clower, W.; Wilson, C.G. On-chip microplasmas for the detection of radioactive cesium contamination in seawater. Micromachines 2017, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Evrard, O.; Chalaux-Clergue, T.; Chaboche, P.A.; Wakiyama, Y.; Thiry, Y. Research and management challenges following soil and landscape decontamination at the onset of the reopening of the Difficult-to-Return Zone, Fukushima (Japan). Soil 2023, 9, 479–497. [Google Scholar] [CrossRef]
- Oshima, K.; Tanaka, K.; Hachisuka, R.; Yokoyama, Y.; Saito, A.T.; Sugimoto, J.; Nakajima, I.; Matsuoka, T. The National Diet of Japan Fukushima Nuclear Accident Independent Investigation Commission. Available online: https://warp.da.ndl.go.jp/info:ndljp/pid/3856371/naiic.go.jp/en/report/ (accessed on 3 February 2024).
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR 2020/2021 Report. Volume II: Scientific Annex B: Levels and Effects of Radiation Exposure Due to the Accident at the Fukushima Daiichi Nuclear Power Station: Implications of Information Published Since the UNSCEAR 2013 Report. Available online: https://www.unscear.org/docs/publications/2020/UNSCEAR_2020_21_Report_Vol.II.pdf (accessed on 3 February 2024).
- Tanigaki, M. Development of a carborne survey system, KURAMA. In Radiation Monitoring and Dose Estimation of the Fukushima Nuclear Accident; Takahashi, S., Ed.; Springer: Tokyo, Japan, 2014; pp. 67–77. [Google Scholar]
- Hassan, M.N.; Islam, M.R.; Faisal, F.; Semantha, F.H.; Siddique, A.H.; Hasan, M. An IoT based Environment Monitoring System. In Proceedings of the 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 3–5 December 2020. [Google Scholar]
- Ministry of the Environment, Japan. Initiatives of Ministry of the Environment for Reconstruction and Revitalization from the Great East Japan Earthquake. Available online: http://josen.env.go.jp/en/pdf/initiatives_2304.pdf (accessed on 3 February 2024).
- Ishigaki, Y.; Ichimiya, R.; Matsumoto, Y.; Tanaka, K. Ultra-Low-Cost Radiation Monitoring System Utilizing Smartphone-Connected Sensors Developed with Internet Community. In Proceedings of the SENSORS, 2012 IEEE, Taipei, Taiwan, 28–31 October 2012. [Google Scholar]
- Ishigaki, Y.; Matsumoto, Y.; Ichimiya, R.; Tanaka, K. Development of mobile radiation monitoring system utilizing smartphone and its field tests in Fukushima. IEEE Sens. J. 2013, 13, 3520–3526. [Google Scholar] [CrossRef]
- Kuča, P.; Helebrant, J.; Bossew, P. Citizen monitoring of ambient dose rate: The SAFECAST project. Radiat. Prot. Dosim. 2023, 199, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuki, N. The Asahi Shimbun. Evacuation Orders to Be Lifted Even before Radiation Is Purged. Available online: https://www.asahi.com/ajw/articles/13426557 (accessed on 3 February 2024).
- Ohba, T.; Tanigawa, K.; Liutsko, L. Evacuation after a nuclear accident: Critical reviews of past nuclear accidents and proposal for future planning. Environ. Int. 2021, 148, 106379. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, B.; Jensen, P.H. Shielding factors for vehicles to gamma radiation from activity deposited on structures and ground surfaces. Health Phys. 1983, 45, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Kong, F.; Zhou, J.; Wu, X.; Xie, Q. Land resource use classification using deep learning in ecological remote sensing images. Comput. Intell. Neurosci. 2022, 2022, 7179477. [Google Scholar] [CrossRef] [PubMed]
- Riga-Karandinos, A.N.; Karandinos, M.G. ¹³⁷Cs concentrations and ecological half-lives in three epiphytic lichen species from Southern Greece (Megalopolis). Bryologist 1988, 101, 422–427. [Google Scholar] [CrossRef]
- Iwata, K.; Tagami, K.; Uchida, S. Estimation of Ecological Half-Lives of Radiocesium in Marine Biota at the Offshore of Fukushima, Japan. In Proceedings of the International Symposium on Environmental Monitoring and Dose Estimation of Residents after Accident of TEPCO’s Fukushima Daiichi Nuclear Power Stations, Kyoto, Japan, 14 December 2012. [Google Scholar]
- Yamaguchi, T.; Taira, Y.; Matsuo, M.; Orita, M.; Yamada, Y.; Takamura, N. Local levels of radiation exposure doses due to radiocesium for returned residents in Tomioka town, Fukushima prefecture. Radiat. Prot. Dosim. 2021, 193, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Tokyo Metropolitan Government Bureau of Environment. Calculation Basis of 0.23 Microsievert Per Hour Indicated by the Country (Ministry of the Environment). Available online: https://www.kankyo.metro.tokyo.lg.jp/policy_others/radiation/view/men.html?fbclid=IwAR0xJ0GondjGbcTVuVP0Ni_CPYtmO-dB_vCk8Bw3NHtxLhP4AA4y64tkY_E (accessed on 3 February 2024).
- ICRP. Radiological protection of people and the environment in the event of a large nuclear accident: Update of ICRP Publications 109 and 111. ICRP Publication 146. Ann. ICRP 2020, 49, 4. [Google Scholar]
- ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 2007, 37, 2–4. [Google Scholar]
- Inoue, K.; Arai, M.; Fujisawa, M.; Saito, K.; Fukushi, M. Detailed distribution map of absorbed dose rate in air in Tokatsu area of Chiba prefecture, Japan, constructed by car-borne survey 4 years after the Fukushima Daiichi nuclear power plant accident. PLoS ONE 2017, 12, e0171100. [Google Scholar] [CrossRef] [PubMed]
- Decontamination Implementation Status—Fukushima Reconstruction Information Portal Site—Fukushima Prefecture Homepage. Available online: https://www.pref.fukushima.lg.jp/site/portal/01josen.html (accessed on 7 February 2024).
- Kazunobu, F.; Abe, S.; Fujimoto, K. Analysis of contour map of natural radiation in Japan. J. Nucl. Sci. Technol. 1981, 18, 727–736. [Google Scholar]
- Kinase, S.; Takahashi, T.; Saito, K. Long-term predictions of ambient dose equivalent rates after the Fukushima Daiichi nuclear power plant accident. J. Nucl. Sci. Technol. 2017, 54, 1345–1354. [Google Scholar] [CrossRef]
Mean Outdoor Dose [µSv/h] (Standard Error) | Mean Indoor Dose [µSv/h] (Standard Error) | Shielding Factor (Standard Error) | |
---|---|---|---|
February 2022 | 0.30 (0.04) | 0.09 (0.02) | 0.30 (0.035) |
February 2023 | 0.17 (0.04) | 0.07 (0.02) | 0.40 (0.035) |
ALOS Classification | Mean Dose 1 in 2022 [µSv/h] (Standard Error) | Mean Dose 1 in 2023 [µSv/h] (Standard Error) | Letters 2 | Ecological Half-Life [y] | |
---|---|---|---|---|---|
2022 | 2023 | ||||
Bare land | 0.04 (0.001) | 0.03 (0.007) | C | A | 2.41 |
Crop | 0.06 (0.001) | 0.03 (0.02) | A | A | 1.00 |
Forest | 0.05(0.007) | 0.03 (0.02) | A B | A | 1.36 |
Grassland | 0.05 (0.003) | 0.03 (0.02) | B | A | 1.36 |
Rice paddy | 0.05 (0.012) | 0.03 (0.02) | ABC | A | 1.36 |
Urban | 0.04 (0.0007) | 0.02 (0.02) | C | B | 1.00 |
Solar Panel | 0.03 (0.02) | A | B | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omega, R.L.; Ishigaki, Y.; Permana, S.; Matsumoto, Y.; Yamamoto, K.; Shozugawa, K.; Hori, M. Low-Cost Sensor Deployment on a Public Minibus in Fukushima Prefecture. Sensors 2024, 24, 1375. https://doi.org/10.3390/s24051375
Omega RL, Ishigaki Y, Permana S, Matsumoto Y, Yamamoto K, Shozugawa K, Hori M. Low-Cost Sensor Deployment on a Public Minibus in Fukushima Prefecture. Sensors. 2024; 24(5):1375. https://doi.org/10.3390/s24051375
Chicago/Turabian StyleOmega, Rakotovao Lovanantenaina, Yo Ishigaki, Sidik Permana, Yoshinori Matsumoto, Kayoko Yamamoto, Katsumi Shozugawa, and Mayumi Hori. 2024. "Low-Cost Sensor Deployment on a Public Minibus in Fukushima Prefecture" Sensors 24, no. 5: 1375. https://doi.org/10.3390/s24051375
APA StyleOmega, R. L., Ishigaki, Y., Permana, S., Matsumoto, Y., Yamamoto, K., Shozugawa, K., & Hori, M. (2024). Low-Cost Sensor Deployment on a Public Minibus in Fukushima Prefecture. Sensors, 24(5), 1375. https://doi.org/10.3390/s24051375