Normalizing Large Scale Sensor-Based MWD Data: An Automated Method toward A Unified Database
Abstract
1. Introduction
2. Material and Methods
2.1. Data Source Description
2.2. Applied Methodology
2.2.1. Filtering Procedure in Block A
2.2.2. Normalizing Procedure in Block B
2.3. Generating A Unified Database
’ corresponds to the table name. The ‘ID’ is the identifier index linked to the original ‘Raw File’. For example, the ID in ‘Data Type’ shows the type of data, i.e., ‘MWD’ or ‘Grouting’ which can be selected in ‘Column Name’. The table of ‘Raw File’ dedicates the information on the name, folder, project, and type of the original uploaded files using ‘File ID’, ‘File Name’, ‘Folder Name’, ‘Project Name’, and ‘Data Type ID’. The tables of ‘MWD_header’ and ‘Grouting_header’ store the information of the header of each data type that is linked to the corresponding file in the table of ‘Raw File’ via ‘File ID’. Accordingly, columns T1–T9 are the three-dimensional rotation matrices of the drill wreath for controlling the spatial direction, and columns T10–T12 denote the absolute coordinates of the starting point of the borehole. The (‘
’) shows the unique identity of each row in that table while (‘
’) represents a set of attributes in a table that refers to the (‘
’) of another table. These two keys connect the 6 tables together and enable users to extract data efficiently from different tables at the same time. Such utilities provide efficient choices to extract both MWD and grouting data through different query conditions and specific field ID values.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A

| MWD Parameter | NIP-Väst Länken | NIP-CVR Väst Länken | ||||
|---|---|---|---|---|---|---|
| Satisfactory | Acceptable | Out of Limit | Acc. Performance | Gray Zone | Out of Limit | |
| PR dm/min | 133,300 | 8126 | 2117 | 141,426 | 0 | 10,243 |
| HP bar | 136,559 | 3175 | 11,935 | 136,559 | 0 | 15,110 |
| FP bar | 140,450 | 3174 | 8045 | 140,450 | 0 | 11,219 |
| DP bar | 104,819 | 38,844 | 8006 | 104,819 | 0 | 46,850 |
| Rs r/min | 110,447 | 32,508 | 8714 | 110,447 | 0 | 41,222 |
| RP bar | 103,328 | 42,012 | 6329 | 103,328 | 0 | 48,341 |
| WF l/min | 129,425 | 12,672 | 9572 | 129,425 | 0 | 22,244 |
| WP bar | 124,121 | 17,992 | 9572 | 124,121 | 0 | 27,548 |
| MWD Parameter | NIP-FSE410 | NIP-CVR FSE410 | ||||
|---|---|---|---|---|---|---|
| Satisfactory | Acceptable | Out of Limit | Acc. Performance | Gray Zone | Out of Limit | |
| PR dm/min | 4,137,640 | 1,111,975 | 130,073 | 4,137,640 | 0 | 1,242,048 |
| HP bar | 4,337,126 | 855,113 | 187,449 | 4,337,126 | 0 | 1,042,562 |
| FP bar | 3,703,051 | 1,494,882 | 181,755 | 3,703,051 | 0 | 1,866,593 |
| DP bar | 3,513,095 | 1,652,843 | 213,750 | 3,513,095 | 0 | 1,866,593 |
| Rs r/min | 4,642,513 | 202,275 | 534,900 | 4,642,513 | 0 | 737,175 |
| RP bar | 3,760,962 | 1,389,361 | 229,365 | 3,760,962 | 0 | 1,618,726 |
| WF l/min | 3,580,175 | 1,687,855 | 111,658 | 3,580,175 | 0 | 1,799,513 |
| WP bar | 4,494,233 | 523,568 | 361,887 | 4,494,233 | 0 | 885,455 |
References
- Gearhart, M.; Moseley, L.M.; Foste, M. Current state of the art of MWD and its application in exploration and development drilling. In Proceedings of the International Meeting on Petroleum Engineering, Beijing, China, 17 March 1986. SPE-14071-MS. [Google Scholar] [CrossRef]
- Smith, B. Improvements in blast fragmentation using measurement while drilling parameters. Int. J. Blasting Fragm. 2002, 6, 310. [Google Scholar] [CrossRef]
- Schunnesson, H. Rock characterization using percussive drilling. Int. J. Rock Mech. Min. Sc. 1998, 35, 711–725. [Google Scholar] [CrossRef]
- van Eldert, J.; Schunnesson, H.; Saiang, D.; Funehag, J. Improved filtering and normalizing of Measurement-While-Drilling (MWD) data in tunnel excavation. Tunn. Undergr. Space Technol. 2020, 103, 103467. [Google Scholar] [CrossRef]
- Segui, J.B.; Higgins, M. Blast design using measurement while drilling parameters. Fragblast 2002, 6, 287–299. [Google Scholar] [CrossRef]
- Ghosh, R.; Gustafson, A.; Schunnesson, H. Development of a geological model for chargeability assessment of borehole using drill monitoring technique. Int. J. Rock Mech. Min. Sci. 2018, 109, 9–18. [Google Scholar] [CrossRef]
- Rostami, J.; Kahraman, S.; Naeimipour, A.; Collins, C. Rock characterization while drilling and application of roof bolter drilling data for evaluation of ground conditions. J. Rock Mech. Geo. Eng. 2015, 7, 273–281. [Google Scholar] [CrossRef]
- Nilsen, B. Main challenges for deep subsea tunnels based on Norwegian experience. J. Korean Tunn. Undergr. Space Assoc. 2015, 17, 563–573. [Google Scholar] [CrossRef][Green Version]
- Hansen, T.F.; Erharter, G.H.; Marcher, T.; Liu, Z.; Tørresen, J. Improving face decisions in tunnelling by machine learning-based MWD analysis. Geomech. Tunneling 2022, 15, 222–231. [Google Scholar] [CrossRef]
- Navarro, J.; Sanchidrian, J.A.; Segarra, P.; Castedo, R.; Paredes, C.; Lopez, L.M. On the mutual relations of drill monitoring variables and the drill control system in tunneling operations. Tunn. Undergr. Space Technol. 2018, 72, 294–304. [Google Scholar] [CrossRef]
- Khorzougi, M.B.; Hall, R. Processing of measurement while drilling data for rock mass characterization. Int. J. Min. Sci. Technol. 2016, 26, 989–994. [Google Scholar] [CrossRef]
- Khorzoughi, M.B.; Hall, R.; Apel, D. Rock fracture density characterization using measurement while drilling (MWD) techniques. Int. J. Min. Sci. Technol. 2018, 28, 859–864. [Google Scholar] [CrossRef]
- Isheyskiy, V.; Martinyskin, E.; Smirnov, S.; Vasilyev, A.; Knyazev, K.; Fatyanov, T. Specifics of MWD data collection and verification during formation of training datasets. Minerals 2021, 11, 798. [Google Scholar] [CrossRef]
- Isheyskiy, V.; Sanchidrian, J.A. Prospects of applying MWD technology for quality management of drilling and blasting operations at mining enterprises. Minerals 2020, 10, 925. [Google Scholar] [CrossRef]
- Saunders, M.R.; Shields, J.A.; Taylor, M.R. Improving the value of geological data: A standardized data model for industry. Geol. Soc. 1996, 97, 41–53. [Google Scholar] [CrossRef]
- Ziegler, P.; Dittrich, K.R. Data integration- problems; approaches; and perspectives. In Conceptual Modelling in Information Systems Engineering; Krogstie, J., Opdahl, A.L., Brinkkemper, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 35–98. [Google Scholar] [CrossRef]
- Wu, S. A review on coarse warranty data and analysis. Reliab. Eng. Syst. Saf. 2013, 114, 1–11. [Google Scholar] [CrossRef]
- Chapman, J.W.; Reynolds, D.; Shreeves, S.A. Repository metadata: Approaches and challenges. Cat. Classif. Quaterly 2009, 47, 309–325. [Google Scholar] [CrossRef]
- Alreshidi, E.; Mourshed, M.; Rezgui, Y. Requirements for cloud-based BIM governance solutions to facilitate team collaboration in construction projects. Requir. Eng. 2018, 23, 1–31. [Google Scholar] [CrossRef]
- Imieliński, T.; Virmani, A.; Abdulghani, A. DMajor- Application programming interface for database mining. Data Min. Knowl. Discov. 1999, 3, 347–372. [Google Scholar] [CrossRef]
- Kaplinski, O.; Tamošaitienė, J. Analysis of normalization methods influencing results: A review to honour professor Friedel Peldschus on the occasion of his 75th birthday. Procedia Eng. 2015, 122, 2–10. [Google Scholar] [CrossRef][Green Version]
- Trung, D.D. Development of data normalization methods for multi-criteria decision making: Applying for MARCOS method. Manuf. Rev. 2022, 9, 22. [Google Scholar] [CrossRef]
- Mukhametzyanov, I.Z. Normalization of Multidimensional Data for Multi-Criteria Decision Making Problems; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Jüttler, H. Untersuchungen zu Fragen der Operationsforschung und ihrer Anwendungsmöglichkeiten auf ökonomische Problemstellungen unter besonderer Berücksichtigung der Spieltheorie. Ph.D. Thesis, Wirtschftswissenschaftliche Fakultät der Humbold-Universität Berlin, Berlin, Germany, 1996. [Google Scholar]
- Weitendorf, D. Beitrag zur Optimierung der Räumlichen Struktur Eines Gebäudes. Ph.D. Thesis, Hochschule für Architektur und Bauwesen Weimar, Weimar, Germany, 1976. [Google Scholar]
- Peldschus, F.; Vaigauskas, E.; Zavadskas, E.K. Technologische entscheidungen bei der berücksichtigung mehrerer ziehle. Bauplan. Bautech. 1983, 37, 173–175. [Google Scholar]
- Peldschus, F. Zur Anwendung der Theorie der Spiele für Aufgaben der Bautechnologie. Ph.D. Thesis, Technischen Hochschule Leipzig, Leipzig, Germany, 1986; p. 119. [Google Scholar]
- Peldschus, F. Experience of the game theory application in construction management. Ukio Technol. Ir Ekon. Vystym. 2008, 14, 531–545. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z. A new normalization method in games theory. Informatica 2008, 19, 303–314. [Google Scholar] [CrossRef]
- Börner, I. Untersuchungen zur Optimierung Nach Mehreren Zielen für Aufgaben der Bautechnologie. Ph.D. Thesis, Sektion Technologie der Bauproduktion; Diplomarbeit, Leipzig, Germany, 1980. [Google Scholar]
- Tsatalos, O.G.; Ioannidis, Y.E. A unified framework for indexing in database systems. In Database and Expert Systems Applications; Karagiannis, D., Ed.; DEXA 1994, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1994; Volume 856, pp. 183–192. [Google Scholar] [CrossRef]
- Zhussupbekov, A.; Alibekova, N.; Akhazhanov, S.; Sarsembayeva, A. Development of a unified geotechnical database and data processing on the example of Nur-Sultan City. Appl. Sci. 2021, 11, 306. [Google Scholar] [CrossRef]
- Ishaq, M.; Abid, A.; Farooq, M.S.; Manzoor, M.F.; Farooq, U.; Abid, K.; Helou, M.A. Advances in database systems education: Methods; tools; curricula; and way forward. Educ. Inf. Technol. 2023, 28, 2681–2725. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Zhang, Q.; Zhou, Y.; Chen, W.; Liu, X.; Gopalakrishnan, G. Progress and challenges of big data research on petrology and geochemistry. Solid Earth Sci. 2018, 3, 105–114. [Google Scholar] [CrossRef]
- Deng, L.C.; Li, X.Z.; Xu, W.; Xiong, Z.; Wang, J.; Qiao, L. Measurement while core drilling based on a small-scale drilling platfrom: Mechanical and energy analysis. Measurement 2022, 204, 112082. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, B.; Hu, H. Novel two-step filtering scheme for a logging while-drilling system. Comput. Phys. Commun. 2019, 180, 1566–1571. [Google Scholar] [CrossRef]
- Geekiyanage, S.C.H.; Tunkiel, A.; Sui, D. Drilling data quality improvement and information extraction with case studies. J. Pet. Explor. Prod. Technol. 2021, 11, 819–837. [Google Scholar] [CrossRef]
- Yang, Y.; Li, F.; Gao, Y.; Mao, Y. Multi-sensor combined measurement while drilling based on the improved adaptive fading square root unscented Kalman filter. Sensors 2020, 20, 1897. [Google Scholar] [CrossRef]
- Arabjamaloei, R.; Edalatkha, S.; Jamshidi, E.; Nabaei, M.; Beidokhti, M.; Azad, M. Exact lithologic boundary detection based on wavelet transform analysis and real-time investigation of facies discontinuities using drilling data. Pet. Sci. Technol. 2011, 29, 569–578. [Google Scholar] [CrossRef]
- Zhao, R.; Shi, S.; Li, S.; Guo, W.; Zhang, T.; Li, X.; Lu, J. Deep learning for intelligent prediction of rock strength by adopting measurement while drilling data. Int. J. Geomech. 2023, 23, 04023028. [Google Scholar] [CrossRef]
- Eren, T.; Ozbayoglu, M.E. Real time optimization of drilling parameters during drilling operations. In SPE Oil and Gas India Conference and Exhibition; SPE-1291126-MS; SPE: Mumbai, India, 2010. [Google Scholar] [CrossRef]
- Leung, R.; Scheding, S. Automated coal seam detection using modulated specific energy measure in a monitor-while-drilling context. Int. J. Rock Mech. Min. Sci. 2015, 75, 196–209. [Google Scholar] [CrossRef]
- Abdelaal, A.; Elkatatny, S.; Abdulraheem, A. Real-time prediction of formation pressure gradient while drilling. Sci. Rep. 2022, 12, 11318. [Google Scholar] [CrossRef] [PubMed]
- Aljubran, M.; Ramasamy, J.; Albassam, M.; Magana-Mora, A. Deep learning and time-series analysis for the early detection of lost circulation incidents during drilling operations. IEEE Access 2021, 9, 76833–76846. [Google Scholar] [CrossRef]
- Ertunc, H.M.; Loparo, K.A.; Ocak, H. Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs). Int. J. Mach. Tools Manuf. 2001, 41, 1363–1384. [Google Scholar] [CrossRef]
- Rodgers, M.; McVay, M.; Horhota, D.; Hernando, J.; Paris, J. Measuring while drilling in Florida limestone for geotechnical site investigation. Can. Geotech. J. 2020, 57, 1733–1744. [Google Scholar] [CrossRef]
- Purkayastha, A.D.; Nair, P.V. Prospect level normalization of offset pore pressure measurements: Analysis of approaches and their association with regional geology. In SPE Oil and Gas India Conference and Exhibition; SPE-185394-MS; SPE: Mumbai, India, 2017. [Google Scholar] [CrossRef]
- Basarir, H.; Wesseloo, J.; Karrech, A.; Pasternak, E.; Dyskin, A. The use of soft computing methods for the prediction of rock properties based on measurement while drilling data. In Deep Mining 2017: Proceedings of the Eighth International Conference on Deep and High Stress Mining; Wesseloo, J., Ed.; Australian Centre for Geomechanics: Perth, WA, Australia, 2017; pp. 537–551. [Google Scholar] [CrossRef]
- Ghosh, R.; Schunnesson, H.; Kumar, U. Evaluation of rock mass characteristics using measurement while drilling in Boliden Minerals Aitik Copper Mine; Sweden. In Mine Planning and Equipment Selection; Drebenstedt, C., Singhal, R., Eds.; Springer: Cham, Switzerland, 2014; pp. 81–91. [Google Scholar] [CrossRef]
- Martin, C.A.; Philo, R.M.; Decker, D.P.; Burgess, T.M. Innovative advances in MWD. In Proceeding of the IADC/SPE Drilling Conference, Dallas, Dallas, TX, USA, 15–18 February 1994. SPE-27516-MS. [Google Scholar] [CrossRef]
- Fernández, A.; Sanchidrián, J.A.; Segarra, P.; Gómez, S.; Li, E.; Navarro, R. Rock mass structural recognition from drill monitoring technology in underground mining using discontinuity index and machine learning techniques. Int. J. Min. Sci. Technol. 2023, 33, 555–571. [Google Scholar] [CrossRef]
- Reckmann, H.; Jogi, P.; Kpetehoto, F.; Chandrasekaran, S.; Macpherson, J. MWD failure rates due to drilling dynamics. In Proceedings of the ADC/SPE Drilling Conference and Exhibition, New Orleans, LA, USA, 2–4 February 2010. Paper Number: SPE-127413-MS. [Google Scholar] [CrossRef]
- Song, S.; Zhang, T.; Wang, Z.; Pei, R.; Yan, S.; Chen, K. Full waveform vibration and shock measurement tool for measurement-while-drilling. AIP Adv. 2022, 12, 085114. [Google Scholar] [CrossRef]
- Su, Y.; Sheng, L.; Li, L.; Bian, H.; Shi, R.; Zhuang, X.; Chin, W. Strategies in high-data-rate MWD mud pulse telemetry. J. Sustain. Energy Eng. 2014, 2, 269–319. [Google Scholar] [CrossRef]
- Abbaszadeh Shahri, A.; Shan, C.; Larsson, S. A hybrid ensemble-based automated deep learning approach to generate 3D geo-models and uncertainty analysis. Eng. Comput. 2023. [Google Scholar] [CrossRef]
- Duking, M.F.; Kraaikamp, C.; Lopuhaa, P.; Meester, L.E. A Modern Introduction to Probability and Statistics; Springer: London, UK, 2005. [Google Scholar] [CrossRef]
- Yao, K.; Gao, J. Law of large numbers for uncertain random variables. IEEE Trans. Fuzzy Syst. 2016, 24, 615–621. [Google Scholar] [CrossRef]
- Kaas, R.; Buhrman, J.M. Mean; median and mode in binomial distribution. Stat. Neerl. 1980, 34, 13–18. [Google Scholar] [CrossRef]











| Normalizing Method | Preferred Interval | Note |
|---|---|---|
| Vector [28] | The ratio of values remains constant within interval [0, 1] | |
| Linear [25] | The calculated values are dependent on the size of interval [maxaij, minaij] | |
| [24] | Limited to interval [0, 1] | |
| Nonlinear [26] | The values are diminished more than when using other methods | |
| Logarithmic [29] | The sum of normalized criterion values is always 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbaszadeh Shahri, A.; Shan, C.; Larsson, S.; Johansson, F. Normalizing Large Scale Sensor-Based MWD Data: An Automated Method toward A Unified Database. Sensors 2024, 24, 1209. https://doi.org/10.3390/s24041209
Abbaszadeh Shahri A, Shan C, Larsson S, Johansson F. Normalizing Large Scale Sensor-Based MWD Data: An Automated Method toward A Unified Database. Sensors. 2024; 24(4):1209. https://doi.org/10.3390/s24041209
Chicago/Turabian StyleAbbaszadeh Shahri, Abbas, Chunling Shan, Stefan Larsson, and Fredrik Johansson. 2024. "Normalizing Large Scale Sensor-Based MWD Data: An Automated Method toward A Unified Database" Sensors 24, no. 4: 1209. https://doi.org/10.3390/s24041209
APA StyleAbbaszadeh Shahri, A., Shan, C., Larsson, S., & Johansson, F. (2024). Normalizing Large Scale Sensor-Based MWD Data: An Automated Method toward A Unified Database. Sensors, 24(4), 1209. https://doi.org/10.3390/s24041209

