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Abstract: In the context of geo-infrastructures and specifically tunneling projects, analyzing the
large-scale sensor-based measurement-while-drilling (MWD) data plays a pivotal role in assessing
rock engineering conditions. However, handling the big MWD data due to multiform stacking is a
time-consuming and challenging task. Extracting valuable insights and improving the accuracy of
geoengineering interpretations from MWD data necessitates a combination of domain expertise and
data science skills in an iterative process. To address these challenges and efficiently normalize and
filter out noisy data, an automated processing approach integrating the stepwise technique, mode,
and percentile gate bands for both single and peer group-based holes was developed. Subsequently,
the mathematical concept of a novel normalizing index for classifying such big datasets was also
presented. The visualized results from different geo-infrastructure datasets in Sweden indicated
that outliers and noisy data can more efficiently be eliminated using single hole-based normalizing.
Additionally, a relational unified PostgreSQL database was created to store and automatically transfer
the processed and raw MWD as well as real time grouting data that offers a cost effective and efficient
data extraction tool. The generated database is expected to facilitate in-depth investigations and
enable application of the artificial intelligence (AI) techniques to predict rock quality conditions and
design appropriate support systems based on MWD data.

Keywords: sensor-based data; measurement while drilling (MWD); normalizing index; filtering
process; tunneling; Sweden

1. Introduction

Measurement while drilling (MWD) is a sensor-based monitoring technology [1].
However, as referenced by [2], the use of MWD as a drill monitoring technique in different
geoengineering applications has been well recognized since the 1970s. Real-time drilling
data captured by MWD can provide detailed design insights for geologic formations
through processing and interpretation. [3]. Depending on the type of drilling rig, several
parameters, i.e., thrust, air pressure, feed pressure, percussion pressure, rotation speed,
penetration rate, torque, flushing pressure, flushing flow, drilling depth, and time are mea-
sured [4]. The immediacy and relative cheapness of data acquisition using the embedded
different sensors in the drilling rig is the main attractiveness of this technology [5].

Currently, organization and interpretation of the collected MWD data have success-
fully been applied on geo-infrastructures in several countries like Sweden [4,6], USA [7],
Norway [8,9], Spain [10], Canada [11,12], and Russia [13]. Figure 1 shows the increased
cumulative trend of the geoengineering application of MWD data in recent years.
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Figure 1. Increasing trend of using MWD data in geoengineering application in last five decades
(after [14]).

Technically, standardization of data formats [15], data integration [16], data cleans-
ing [17], metadata management [18], cloud-based solutions [19], and application program-
ming interfaces (APIs) [20] are the most commonly used approaches for processing and
managing a centralized MWD database in geoengineering. Overall, these methods aim
to define a consistent form of MWD data processing that can be integrated and shared
across different systems and platforms. However, in terms of data analytical systems, the
MWD data is a typical representation of complex large-scale and big data in geoengineering
applications that cannot easily be stored in traditional databases. Accordingly, the outliers
of such metadata require appropriate removal (filtering) and scaling (normalizing) for
consistent interpretation and a further centralized storing location (unified database) to
assist quick retrieval of relevant data for analysis. The drilling rig is composed of various
tools that interact in complex ways, such as the drill string, bit, and subsurface. This
interaction may introduce noise or anomalies in the MWD parameters, which may lead to
outliers. Subsequently, the MWD data is typically acquired by embedded sensors near the
drill bit, and thereby, the presence of noisy records due to various factors, like the drilling
environment/ condition, tool wear, and signal interference cannot be neglected.

The concept of a normalizing process in combination with different calculation meth-
ods has been used for solving a variety of decision-making problems in civil engineer-
ing [21–23]. Table 1 shows the most commonly used normalizing methods including linear
transformation [24,25], nonlinear transformation [26,27], vector normalization [28], and log-
arithmic approach [29]. However, the first analysis of the impact of the applied normalizing
method on the results was highlighted by [30] and then [27].

Consequently, establishing a unified MWD database provides a crucial structured
tool/framework that ensures data integrity and minimizes redundancy. The unified
database also can improve data management, i.e., a centralized location with accessi-
ble shared space via regulatory compliance requirements during both operational and
research stages. This implies that unification facilitates in-depth physically meaningful
interpretation of the retrieved information. These characteristics then provide a consis-
tent and cost-effective data analysis platform for auditing and optimization across data
mining and artificial intelligence (AI) approaches to obtain more detailed information on
subsurface conditions. As a result, the unified database facilitates collaborations between
geoengineers and stakeholders for better communication and promoting more efficient
workflows [31–33]. Such analysis will then greatly help the geoengineers to identify pat-
terns, and trends and anomalies that allow error elimination to be more based on informed
decision-making and operational improvement [14].
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Due to a lack of acknowledged capability of big data analysis in geo-modelling prob-
lems [34], geoengineers may face obstacles at the initial stage of analysis. This is primarily
because they have been neither aware nor equipped to address the encountered challenges.
On the other hand, the large amount of geo-data generated during the projects often are
annotated manually for the project purposes where the acquired data neither are normal-
ized in the same scale nor filtered properly for outlier removal. Therefore, creating an
integrated unified meta-database using an advanced automated procedure covering the
filtering and normalizing processes is highly desirable in geoengineering applications. In
the current paper, to rescue both high and low bands of MWD data, a novel automated
normalizing approach for analyzing the single/peer group-based holes using the mode
and average gated bands supplemented by the percentile filtering and different variants
of component combinations is presented. With this strategy, a normalized index was also
introduced to categorize the accuracy and acceptable performance of the process for each of
the recorded MWD components. Practically, the capacity of the suggested procedure was
examined on acquired MWD data from two different geo-infrastructure tunnels in Sweden.
The results showed that the single hole-based strategy could provide more concise results
in outlier removal.

Table 1. The common normalizing methods.

Normalizing Method Preferred Interval Note
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2. Material and Methods
2.1. Data Source Description

In the current paper, the MWD data from part of two different geo-infrastructure
projects in Sweden, namely as väslänken and Stockholm Bypass, titled FSE410, were ana-
lyzed. The used datasets from FSE410 also included the real-time grouting supplemented
by protocols, i.e., drilling plans and water flow measurements. These supplementary
datasets could potentially be the subject of the development of modern AI-based modeling
approaches for detailed analysis of the MWD parameters and grouting design.

The employed MWD datasets and their units followed a matrix and txt format
(Figure 2). The columns show the measured parameters including hole depth (HD, mm),
penetration rate (PR, dm/min), percussive pressure (HP, bar), feed pressure (FP, bar), damp-
ing pressure (DP, bar), rotation speed (RS, r/min), rotation pressure (RP, bar), water flow
(WF, l/min) and water pressure (WP, bar), and the time of operation (hh:mm:ss); the rows
present the corresponding measured values of each recorded interval.
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Figure 2. A sample of the format of the raw records of MWD data.

2.2. Applied Methodology

The flow diagram of the proposed approach is presented in Figure 3 and entirely coded
in Python. Block ‘A’ shows the process of the adopted multi-filtering procedure while Block
‘B’ expresses the implemented framework in the normalizing step. The procedure, due to
the presence of several inner nested loops, mimics an automated process, where the input
MWD data after selecting the adaptive dynamic filtering and subsequent normalization are
transferred to the centralized space to be stored and create the unified database.
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This process was designed in such a way that covers both single hole and peer group-
based analyses. In the hole-based procedure, each individual MWD data (single hole) is
fed, while the peer group is referred to a set of MWD records based on analytically relevant
criteria, i.e., the diameter and hole depth that are related to the rod length.

2.2.1. Filtering Procedure in Block A

As seen in Figure 4, the analyzed raw data showed different rod lengths in drilling
sequences and thus the recommended 0.5 m removal from both sides of the rod by [4]
could not be employed. Therefore, as a peer group criterion, the drill rod length should
be dealt with as a variable during the filtration process. To solve this issue and obtain an
appropriate data split, as presented in Appendix A, a dynamic multi-gated band filtering
procedure based on the mode and long-term average statistics was proposed to identify
the most appropriate combination of MWD parameters, i.e., PR, HP, DP, HP–FP, DP–HP,
HP–DP–FP, etc. The designed bands were then supplemented by a percentile filter.
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Figure 4. A sample plot of raw MWD records based on rod length in different drilling sequences.

In the current project, the combination of HP–PR showed the optimum results and
thus was selected to define the gated band and percentile filters to remove noises or outliers.
This process simultaneously was applied to all the MWD parameters, i.e., removing one
data from HP meant eliminating the entire row of data. As seen in Figures 5 and 6, the
gated-band-using mode and long-term average supplemented by the percentile showed
three states in the datasets, i.e., high/change/low pressure modes. The high-mode data
was delineated using a gated band through a combination of mode and average to cover
the max of HP, i.e., an interval around the max HP value from peer group drilled holes.
Low-pressure data was characterized using the gated band of the mode interval. The rest
of the data within the upper/lower gated bands were then attributed as ‘Change mode’,
i.e., noisy operational data that due to dependency on the drilling rod length should be
excluded in further analysis.
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Figure 6. Visualized results of the filtering procedure based on gated bands and modes of the MWD
data in accordance to HP.

As a result of peer group analysis, a visualized filtering result from one fan in terms of
rod length is presented in Figure 7, i.e., the split data from ’rod 1′ into high/low pressure
modes for the depth interval of 0–6 m.



Sensors 2024, 24, 1209 7 of 17
Sensors 2024, 24, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 7. Rod-length checking through splitting of the merged data (checking the mode capability 

in splitting the high- and low-pressure values for rod 1). 

2.2.2. Normalizing Procedure in Block B 

The normalization process in MWD data aims to adjust and scale the data to a con-

sistent reference or baseline. This process is commonly used to remove variations in the 

data caused by differences in rig type, drilling conditions, and other factors, allowing for 

more accurate analysis and interpretation of the data. Accuracy improvement, providing 

comparable conditions, sensitivity analysis, and more visualized insights are some of the 

potential benefits of normalizing MWD data (e.g., [4,10,35]). The result of depth-based 

normalization for single and peer group holes in terms of raw records (black dots), nor-

malized data after removing the hole depth dependency (green dots), and adopted regres-

sions of each MWD parameter for each rod length (red lines) are presented in Figures 8 

and 9. Subsequently, the comparison of the captured results for both single and peer 

group hole analysis is reflected in Figure 10. 

 

Figure 8. Pattern identification and trend analysis between the normalized and un-normalized 

MWD data (hole-based). 
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splitting the high- and low-pressure values for rod 1).

2.2.2. Normalizing Procedure in Block B

The normalization process in MWD data aims to adjust and scale the data to a con-
sistent reference or baseline. This process is commonly used to remove variations in the
data caused by differences in rig type, drilling conditions, and other factors, allowing for
more accurate analysis and interpretation of the data. Accuracy improvement, providing
comparable conditions, sensitivity analysis, and more visualized insights are some of the
potential benefits of normalizing MWD data (e.g., [4,10,35]). The result of depth-based
normalization for single and peer group holes in terms of raw records (black dots), normal-
ized data after removing the hole depth dependency (green dots), and adopted regressions
of each MWD parameter for each rod length (red lines) are presented in Figures 8 and 9.
Subsequently, the comparison of the captured results for both single and peer group hole
analysis is reflected in Figure 10.
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Figure 10. Comparison of two normalization methods for hole depth dependency removal.

Like any measurement system, MWD tools are not perfect and may have inherent
measurement errors. Embedded sensors near the drill bit typically acquire MWD data,
but records can be noisy due to various factors like drilling environment, tool wear, and
signal interference. These factors can introduce random fluctuations and artifacts into
the data and make it challenging to extract accurate and reliable information from the
MWD data. From this point of view, filtering the MWD data is a critical task in extracting
valuable insights from noisy data to enhance the accuracy of the results analyses, i.e., the
improved signal-to-noise ratio and the higher resolution perspective to detect and interpret
trends and patterns in the data. Therefore, identifying and handling outliers in MWD
data is crucial for maintaining the accuracy of drilling operations and making informed
decisions. Mathematically, the MWD data can be filtered using different techniques such as
bandpass [36], moving average [37], Kalman [38], and wavelet [39]. However, the choice of
filtering technique has a close dependency on the specific application and the characteristics
of the MWD data being analyzed [40]. To avoid manual annotating and ensure sustaining
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the important data during the process, the recommended guidelines by [10] in terms of
different combinations of MWD parameters were followed and programmed via automated
nested loops to capture the optimum alternatives. Referring to this process, the executed
filtering and normalizing showed a degree of improvement in outlier removal caused by
rod length, tool geometries, and drilling conditions (Figures 5–9).

Normalizing is the process of adjusting or scaling datasets to a standard reference
condition to eliminate the effects of variations in drilling circumstances, measurement equip-
ment, and other factors that can affect the data. Since the MWD parameters have different
units of measurement, then the normalization aims to obtain comparable scales of criteria
values. The MWD data can be normalized using different methods via various parameters
like depth normalizing [4,10], time normalizing [41–43], lithology normalizing [35], mud
weight normalizing [44], tool normalizing [45,46], environmental normalizing [4,14,47],
and statistical normalizing [48,49].

2.3. Generating A Unified Database

A centralized data center was designed in this study as an accessible place to store nor-
malized and filtered results. The process was performed through the PostreSQL platform
because of its robustness and open source object–relational database system. The overview
of the designed interface of the datacenter is presented in Figure 11, involving 6 related
tables and the connections based on the settings of primary and foreign keys. The ‘
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Name’, ‘Folder Name’, ‘Project Name’, and ‘Data Type ID’. The tables of ‘MWD_header’
and ‘Grouting_header’ store the information of the header of each data type that is linked
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’) of another table. These two
keys connect the 6 tables together and enable users to extract data efficiently from different
tables at the same time. Such utilities provide efficient choices to extract both MWD and
grouting data through different query conditions and specific field ID values.

This database, due to the developed automated coding, can continuously be updated
using new upcoming data which significantly can facilitate in-depth investigations using
modern computational approaches like AI. The designed database currently includes two
types of data, the MWD (7252 file, 7252 boreholes, 60,110,094 data) and real-time grouting
(1583 file, 39,766 boreholes, 6,814,391 data). This database currently is located in the Tyréns
computer center and can easily be linked to other servers or cloud platforms.
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3. Discussion

Despite the success of the filtering and normalizing procedure, some of the outliers,
i.e., deviated data from the trend of the MWD records, still remained (Figure 5). Technically,
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during the drilling sequences degradation of wear may influence the sensors accuracies
leading to outlier records [50]. On the other hand, formation heterogeneity and subsurface
variability, i.e., changes in rock formations and the presence of fractures, can result in
unexpected records and thus outliers in the MWD parameters [51]. Furthermore, the
complex interactions between components and employed tools in the drilling rigs (drill
string, bit, and the subsurface) can introduce noise or anomalies in the MWD parameters,
leading to outliers [52]. The accuracy of interpreting MWD records is affected by the depth
of drilling. The deeper the depth, the greater the hydrostatic pressure; this can impact the
performance of downhole sensors. This, in turn, may affect the accuracy of MWD records,
resulting in outlier records [45,46]. Moreover, the problem of vibration and shock also
should be considered, because the deeper the drilling, the more challenging conditions,
i.e., harder rocks. Therefore, increased vibration and shock loads on the drilling tools
can influence the reliability of sensors leading to outliers [53]. Subsequently, real-time
data transmission from downhole sensors due to signal interference can corrupt the data,
resulting in outliers, where the longer the drill strings, the more signal attenuation and
data transmission delays, or potential signal loss in the received data [54]. The influence of
operational worker errors in data acquisition and recording also is another potential source
of recorded outliers [4].

Following Figure 3, the adopted regressions of each MWD parameter based on the
peer group data (Figures 8–10) for all the rods concerning identified modes (Figure 6)
were conducted. Referring to Figures 8 and 9, both hole and peer group-based results
showed the stepwise problem (energy losses in the couplings for the rod extension) in
FP and DP at a depth ≥15 m, where the hole-based normalizing could provide more
effective stepwise removal than the peer group analysis. However, the low correlation of
RP (Figure 9) prevented appropriate depth-normalizing, and thereby, the stepwise problem
for a depth ≥15 m was not treated like FP and DP. An overview of the compared methods,
i.e., hole/peer group-based depth-normalization is shown in Figure 10, which indicates
the improper stepwise removal through peer group analysis in RP around 20 m. Such
heterogeneity mechanically can be assigned to the drilled rock mass characteristics which
induced uncertainties in the records where the peer group considered all of the holes
instead of single data in the hole-based approach.

According to the categorized data state conditions (high/low/change mode) based on
the combined PR–HP, the mathematical efficiency of the proposed process in noise removal
from the recorded data, i.e., improving the signal-to-noise ratio, was approved. However,
referring to [10], some of the data that fell within the identified states may have consisted
of information on the poor quality rock that was needed for further investigation using
other combined parameters. As an example, the combination of RS, WP, and WF may
show variations in the rock mass [10]. The relevance of the normalized MWD parameters
integrated with other geotechnical information, i.e., rock mass characteristics and geological
mapping, can be evaluated using the sensitivity analysis to pursue how changes might be
reflected in the MWD data. Therefore, deeper analysis of normalized MWD data can reveal
more insights into the anomalies and trends in the formation that may be of interest for
drilling (e.g., changes in lithology, porosity, or permeability). This is an important key for
geoengineers because it provides a tool to compare MWD data across different holes/depths
and rigs, allowing for a better understanding of the physical properties of the formation
being drilled. Overall, physically meaningful interpretation of the normalized MWD data
requires an analytical understanding of the executed process (e.g., reference values, applied
scaling factors) to identify any biases or errors that may have been introduced during the
normalization process to ensure that the data is being analyzed correctly.

Referring to Figure 11, the embedded possibilities dedicate a time/cost-effective tool
for big data management for more detailed operational and research analyses through
a centralized location that can continuously be updated using new data. The presented
method as a new technical guideline in geoengineering applications can specify the search
strategy in the big data analysis and retrieval protocols. The database considers the
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implications of the research findings for practice and will help with consensus decisions
on areas where evidence is not found. Accordingly, proper integration of such a unified
database with geomechanical data can be the backbone of future deeper analyses through
advanced computationally intelligent techniques [55]. Consequently, such databases offer
more than just insights into the drilling; they also play a crucial role in optimizing the
geoengineering operations and performance improvements via a reliable platform in
terms of high-resolution 3D subsurface computer vision models based on the rock mass
characteristics and geological mapping. However, the limitations of this study can be
dealt with in two different aspects. In terms of geoengineering, the site/rock conditions
in comparing the MWD data were not analyzed and will be carried out in future work.
From the computer point of view, the problems associated with data redundancy, data
inconsistency, and attributes for accessing files were handled but by the expansion of the
created data center, concerns like database failure, hardware, and upgrading cost should
also be considered.

4. Conclusions

In the current project, an entire automated process for filtering, normalizing, and
database creation for big MWD data in both hole and peer group-based was developed and
presented. A combination of PR–HP parameters was identified as the optimum choice for
the filtering procedure. The distinguished states in data (high/low/change mode) using
the adopted mode, long-term average and percentile-gated bands showed an efficient role
in the removal of the noisy data caused by rig components, i.e., collaring and coupling
effects from rod extensions. The applicability of the normalizing process in removing the
hole depth dependencies of MWD data was evaluated using different correlational analyses
based on the rod length. As a result, the hole-based normalizing method showed better
performance in removing the depth dependencies and stepwise problem in the MWD data.
However, data splitting for each rod with different length enabled the peer group analysis
for more efficient filtering/normalizing of the MWD data. The presented procedure could
generally be applied to any retrieved MWD data from each drill rig. The established MWD
data center could structure and manage a large amount of MWD and grouting data to
facilitate storing and extracting both MWD and grouting data. The generated datacenter
mimics the big data characteristic (volume, value, variety, velocity, and veracity), which can
not only be continuously updated by upcoming data but also the users via the designed
queries are able to extract the desired data. It is of great importance for reference tools for
further deeper analyses through modern approaches, i.e., AI modeling, that incorporation
with other geomechanical data sources can provide more accurate and realistic physical
interpretation from MWD and grouting data.
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Appendix A

The expected value of any discrete variable (E(xi)) in each MWD record mathematically
is a real number and can be obtained by:

(E(xi)) = ∑
n

xiP(xi) → where; ∑
i

P(xi) = 1 (A1)

where, P(xi) is the probability of each discrete parameter xi in n records at any MWD data.
On the other hand, E(xi) mathematically shows the long-term average or mean (symbolized
as µ), which would be expected over the long term of MWD records. Referring to the law
of large numbers, the mean (x) converges to the E(x) and thus to the average of the whole
records as the number of repetitions approaches infinity [56,57]. Thereby, x and variance
(σ2

xi
) can be calculated using average or a weighted average data as:

x = ∑N
i=1

xi
N

= ∑
(

xi ×
ni
N

)
→ x = ∑(xi × weighti) (A2)

σ2
xi
= ∑N

i=1
(xi − x)2

N
= ∑N

i=1

[ni
N

× (xi − x)2
]
= ∑N

i=1

[
(xi − x)2 × weighti

]
(A3)

where, xi: value of observation i, ni = number of observations with value xi, N = total
number of observations, x: population mean, and ni/N is the weight.

Based on the Equations (A2) and (A3), the weights show the number of records
among the population and this concept mathematically can be interpreted as mode statistic
because it refers to the number that appears the most in a dataset, where depending on
the distribution, a set of MWD data may have one/more than one/no mode. On the other
hand, the median as the middle number of a given MWD dataset is much more effective
than a mean because it eliminates the outliers through the 3 (median) = mode + 2 (mean).
Due to the large number of recorded MWD data, there was more than a single mean and
variance in the data. Consequently, developing and extending the normalizing procedure
to more than a single mean and variance then allowed for detecting the modes of data for
jointly normalizing samples that share common features. Therefore, the procedure was
carried out based on assigning the gating bands in any mini batch and then normalizing
each sample with estimators for the corresponding ranges of modes in both the upper and
lower bands. Mathematically, such an approach can cover the mean and median of data in
each component of MWD.

Therefore, logically the term xi − µi is a normalizing factor that can characterize the
‘Rig effect’.

Each single MWD data has its own individual mean and variance (Equations (A2) and
(A3)). Accordingly, due to considering the E(x), Bernoulli probability, and thus binomial
distribution, the factor µi statistically represents a combination of mean, mode and median
of each individual component. Referring to the relation of these statistics in binomial
distribution [58], due to the difference of median and mode, the mean lies in between.
Therefore, for each individual record of MWD data, gated bands for both the upper and
lower observed modes can be defined to cover the mean of each recorded parameter and
sustain the median respectively for more efficient removal of the outliers.

Considering the peer group analysis, the measured error is estimated based on the
difference between the MWD result and the value of the peer group mean from each
of the drilling rods. Accordingly, the bias is estimated as the root mean squared of the
measured error from the surveys in each peer group and expressed as a percentage of the
total allowable error. In peer group analysis, the distance of the recorded MWD results
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from the consensus mean for quantification of the inaccuracy of the recorded MWD data
and is defined as follows:

NIP =
xi − µi

Si
(A4)

where NIP denotes the normalized index parameter. µi and Si are the mean and standard
deviation of the peer group. In the case of each parameter without a peer group then NIP
can be written as:

NIP =
xi − µi

σi
(A5)

The control limits of NIP are zero ± 2 NIP. On the other hand, σi cannot be used
to compare the variance of different distributions or distributions with a different mean.
Therefore, for comparison reasons the coefficient of variation (CV%) is being used.

CVi =
σi
µi

(A6)

In the case of peer group, the CVR (CV ratio) should be considered. Therefore:

CVR =
CV o f recorded MWD data

CV o f peer group
(A7)

To remove the outliers, then combination of CVR and NIP can be presented as follows:
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Figure A1. Graphical plot and schemes provided to follow (a) Description data removal using NIP
limits and (b) area analysis of the used data based on CVR for outlier elimination.

Another aspect in this project was assigned to process assessment and result qualities,
where the normalized MWD data could be used to compare data across acquired datasets
at different times. To show whether normalization could help to improve the quality
of MWD data by removing noise and other unwanted variations, a comparative peer
group-based analysis for all the monitored datasets using the introduced Figures 3 and 4
corresponding to Equations (A4)–(A7) were carried out and reflected in Tables A1 and A2.
Referring to achieved results, the presented index in Figure A1a was more sensitive to
outliers than Figure A1b. The reason mathematically was assigned to CV. This physically
also makes sense because using the CV for peer group-based analysis considers all rod
lengths and corresponding drops. By taking these factors into account, analysts can gain
valuable insights into the drilling process and the properties of the formation being drilled.
However, it is still important to emphasize assessing the quality of the data to identify any
sources of uncertainty or error that may impact the analysis.



Sensors 2024, 24, 1209 15 of 17

Table A1. Analyzed MWD data using presented NIP and CVR plots- Väst länken data.

MWD
Parameter

NIP-Väst Länken NIP-CVR Väst Länken

Satisfactory Acceptable Out of
Limit

Acc. Per-
formance Gray Zone Out of

Limit

PR
dm/min 133,300 8126 2117 141,426 0 10,243

HP bar 136,559 3175 11,935 136,559 0 15,110

FP bar 140,450 3174 8045 140,450 0 11,219

DP bar 104,819 38,844 8006 104,819 0 46,850

Rs r/min 110,447 32,508 8714 110,447 0 41,222

RP bar 103,328 42,012 6329 103,328 0 48,341

WF l/min 129,425 12,672 9572 129,425 0 22,244

WP bar 124,121 17,992 9572 124,121 0 27,548
Number of analyzed data: 151,669 data.

Table A2. Analyzed MWD data using presented NIP and CVR plots- FSE410 data.

MWD
Parameter

NIP-FSE410 NIP-CVR FSE410

Satisfactory Acceptable Out of
Limit

Acc. Per-
formance Gray Zone Out of

Limit

PR
dm/min 4,137,640 1,111,975 130,073 4,137,640 0 1,242,048

HP bar 4,337,126 855,113 187,449 4,337,126 0 1,042,562

FP bar 3,703,051 1,494,882 181,755 3,703,051 0 1,866,593

DP bar 3,513,095 1,652,843 213,750 3,513,095 0 1,866,593

Rs r/min 4,642,513 202,275 534,900 4,642,513 0 737,175

RP bar 3,760,962 1,389,361 229,365 3,760,962 0 1,618,726

WF l/min 3,580,175 1,687,855 111,658 3,580,175 0 1,799,513

WP bar 4,494,233 523,568 361,887 4,494,233 0 885,455
Number of analyzed data: 5,379,688 data.
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