Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating
Abstract
1. Introduction
2. Materials and Methods
2.1. Sensor Design and Principle Operation
2.2. COMSOL Multiphysics Simulation
2.3. Fabrication of Coreless Silica Tips
2.4. Graphene Oxide Coating on Coreless Silica Tip
- The air-dried fiber tip is immersed in a polycationic solution containing polyethyleneimine (PEI, Sigma-Aldrich P3143, Burlington, MA, USA) for 30 min at a concentration of 80 μg/mL. The PEI solution was diluted in a sodium chloride (NaCl) aqueous solution with a concentration of 0.03 g/mL. The inclusion of NaCl results in a more stable solution, which is particularly important when electrostatic interactions are significant.
- The probe is rinsed in deionized water to remove unbounded PEI and air-dried for 5 min.
- The tip is immersed in the polyanionic solution of GO (Sigma-Aldrich, 777676, Burlington, MA, USA) with a concentration of 80 μg/mL for 30 min, diluted in deionized water. The GO solution was sonicated for 30 min to reduce agglomeration of the GO flakes, obtaining a higher percentage of monolayer flakes.
- The probe is rinsed in deionized water to remove unbounded GO and air-dried for 5 min.
- Repeat step 2.
2.5. Experimental Setup and Methodology
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Annamdas, K.K.K.; Annamdas, V.G.M. Review on developments in fiber optical sensors and applications. In Fiber Optic Sensors and Applications VII, 2nd ed.; SPIE: Bellingham, WA, USA, 2010; Volume 7677, pp. 15–64. [Google Scholar]
- Culshaw, B.; Kersey, A. Fiber-Optic Sensing: A Historical Perspective. J. Light. Technol. 2008, 26, 1064–1078. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.J.; Yang, Z.; Wilkinson, S.; Zhou, X. Optical biosensors based on refractometric sensing schemes: A review. Biosens. Bioelectron. 2019, 144, 111693. [Google Scholar] [CrossRef] [PubMed]
- Caucheteur, C.; Guo, T.; Albert, J. Review of plasmonic fiber optic biochemical sensors: Improving the limit of detection. Anal. Bioanal. Chem. 2015, 407, 3883–3897. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, C.; Markovics, A.; Baptista, J.; Kovacs, B.; Jorge, P. Measurement of CO2 using refractometer fiber optic sensors. In Proceedings of the 3rd WSEAS International Conference on Advances in Sensors, Signals and Materials, Stevens Point, WI, USA, 3–5 November 2010. [Google Scholar]
- Gong, P.; Li, X.; Zhou, X.; Zhang, Y.; Chen, N.; Wang, S.; Zhang, S.; Zhao, Y. Optical fiber sensors for glucose concentration measurement: A review. Opt. Laser Technol. 2021, 139, 106981. [Google Scholar] [CrossRef]
- Cunha, C.; Assunção, A.S.; Monteiro, C.S.; Leitão, C.; Mendes, J.P.; Silva, S.; Frazão, O.; Novais, S. Transmissive glucose concentration plasmonic Au sensor based on unclad optical fiber. In Proceedings of the IEEE 7th Portuguese Meeting on Bioengineering (ENBENG), Porto, Portugal, 22–23 June 2023. [Google Scholar]
- Liu, Y.; Hering, P.; Scully, M.O. An integrated optical sensor for measuring glucose concentration. Appl. Phys. B 1992, 54, 18–23. [Google Scholar] [CrossRef]
- Yeh, L. Real-time measurement of glucose concentration and average refractive index using a laser interferometer. Opt. Lasers Eng. 2018, 46, 666–670. [Google Scholar] [CrossRef]
- Tang, L.; Chang, S.J.; Chen, C.J.; Liu, J.T. Non-invasive blood glucose monitoring technology: A review. Sensors 2020, 20, 6925. [Google Scholar] [CrossRef] [PubMed]
- Lunjie, H.; Sun, D.H.; Pu, H.; Wei, Q. Development of nanozymes for food quality and safety detection: Principles and recent applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1496–1513. [Google Scholar]
- Zheng, W.; Han, B.; Sun, Y.; Li, X.; Zhang, Y. Highly sensitive and reflective glucose sensor based on optical fiber surface plasmon resonance. Microchem. J. 2020, 157, 105010. [Google Scholar] [CrossRef]
- Novais, S.; Ferreira, C.L.; Ferreira, M.S.; Pinto, J.L. Optical fiber tip sensor for the measurement of glucose aqueous solutions. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Gupta, S.; Sandhu, S.V.; Bansal, H.; Sharma, D. Comparison of salivary and serum glucose levels in diabetic patients. Diabetes Sci. Technol. 2014, 9, 91–96. [Google Scholar] [CrossRef]
- Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review. Sens. Actuator A Phys. 2018, 270, 177–194. [Google Scholar] [CrossRef]
- Sadeghi, Z.; Shojaeihagh, N.; Shirkani, H. Multiple-step graphene grating optical sensors based on surface plasmons in IR range for ultra-sensing biomolecules. J. Mater. Sci. Eng. 2021, 265, 114988. [Google Scholar] [CrossRef]
- Erçarıkcı, E.; Kıranşan, K.D.; Topçu, E. A flexible graphene paper electrochemical sensor with electrodeposited Ag and Ni nanoparticles for H2O2 detection. IEEE Sens. J. 2023, 23, 7087–7094. [Google Scholar] [CrossRef]
- Li, J.X.; Zhang, W.H.; Tong, Z.R.; Liu, J.W. Fiber optic sensor modified by graphene oxide-glucose oxidase for glucose detection. Opt. Commun. 2021, 492, 126983. [Google Scholar] [CrossRef]
- Razali, M.N.; Lokman, M.Q.; Zuikafly, S.N.F.; Ahmad, F.; Rahman, A.A.; Yahaya, H.; Harun, S.W. No-core fiber by self-image length optimization for optical based refractive index sensor. Opt. Fiber Technol. 2022, 74, 103133. [Google Scholar] [CrossRef]
- Mohammed, S.; Waleed, P.; Smith, W.E.; Gu, X. All-fiber multimode interference bandpass filter. Opt. Lett. 2006, 31, 2547–2549. [Google Scholar] [CrossRef]
- Chen, Y.; Han, Q.; Liu, T.; Xiao, H. Wavelength dependence of the sensitivity of all-fiber refractometers based on the single mode–multimode–single mode structure. IEEE Photonics J. 2014, 6, 1–7. [Google Scholar]
- Sepúlveda, G.; Rafael, J.; Cabrera, R.J.; Guzmán, A.A.C. Optical sensing using fiber-optic multimode interference devices: A review of nonconventional sensing schemes. Sensors 2021, 21, 1862. [Google Scholar] [CrossRef] [PubMed]
- Mohd, R.N.; Lokman, M.Q.; Zuikafly, S.N.F.; Ahmad, F.; Yahaya, H. Simulation of Self-Image Interference in Single Mode-No-Core-Single Mode Fiber with COMSOL Multiphysics®. J. Phys. Conf. Ser. 2022, 2411, 012019. [Google Scholar]
- Narváez-Morales, E.; Merkoçi, A. Graphene oxide as an optical biosensing platform: A progress report. Adv. Mater. 2019, 31, 1805043. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Kirkland, J. Porous thin-layer modified glass bead supports for gas liquid chromatography. Anal. Chem. 1965, 37, 1458–1461. [Google Scholar] [CrossRef]
- Monteiro, C.S.; Raposo, M.; Ribeiro, P.A.; Silva, S.O.; Frazão, O. Tuning of fiber optic surface reflectivity through graphene oxide-based layer-by-layer film coatings. Photonics 2020, 7, 11. [Google Scholar] [CrossRef]
- Monteiro, C.S.; Raposo, M.; Ribeiro, P.; Silva, S.; Frazão, O. Graphene oxide as a tunable platform for microsphere-based optical fiber sensors. In Proceedings of the Fourth International Conference on Applications of Optics and Photonics, Lisbon, Portugal, 31 May–4 June 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11207, pp. 199–203. [Google Scholar]
- Xiao, G.; Zhang, K.; Yang, Y.; Yang, H.; Guo, L.; Li, J.; Yuan, L. Graphene oxide sensitized no-core fiber step-index distribution sucrose sensor. Photonics 2020, 7, 101. [Google Scholar] [CrossRef]
- Girei, S.H.; Alkhabet, M.M.; Kamil, Y.M.; Lim, H.N.; Mahdi, M.A.; Yaacob, M.H. Wavelength Dependent Graphene Oxide-Based Optical Microfiber Sensor for Ammonia Gas. Sensors 2021, 21, 556. [Google Scholar] [CrossRef]
- Yan, S.; Pu, S.; Zhang, Y.; Yuan, M.; Zhang, C. Sensing properties of graphene oxide-functionalized single-mode–no-core–single-mode fiber structure. Results Phys. 2021, 25, 104310. [Google Scholar] [CrossRef]
- Chiavaioli, F.; Gouveia, C.A.; Jorge, P.J.; Baldini, F. Towards a uniform metrological assessment of grating-based optical fiber sensors: From refractometers to biosensors. Biosensors 2016, 7, 23. [Google Scholar] [CrossRef]
- Little, T. Method validation essentials, limit of blank, limit of detection, and limit of quantitation. Biopharm Int. 2015, 25, 4. [Google Scholar]
- Li, Y.; Ma, H.; Gan, L.; Liu, Q.; Yan, Z.; Liu, D.; Sun, Q. Immobilized optical fiber microprobe for selective and high sensitive glucose detection. Sens. Actuators B Chem. 2018, 255, 3004–3010. [Google Scholar] [CrossRef]
- Jiang, B.; Zhou, K.; Wang, C.; Sun, Q.; Yin, G.; Tai, Z.; Wilson, K.; Zhao, J.; Zhang, L. Label-free glucose biosensor based on enzymatic graphene oxide-functionalized tilted fiber grating. Sens. Actuators B Chem. 2018, 254, 1033–1039. [Google Scholar] [CrossRef]
- Zhang, J.; Mai, X.; Hong, X.; Chen, Y.; Li, X. Optical fiber SPR biosensor with a solid-phase enzymatic reaction device for glucose detection. Sens. Actuators B Chem. 2022, 366, 131984. [Google Scholar] [CrossRef]
CSF Self-Image Point | |
---|---|
p | LCSF (mm) |
1 | 14.56 |
2 | 29.12 |
3 | 43.68 |
4 | 58.24 |
Settings | Parameter | Value |
---|---|---|
Geometry | SMF core | 8 µm |
SMF cladding | 125 µm | |
SMF length | 5 mm | |
CSF diameter | 125 µm | |
CSF length | 14.56 mm for p = 1 | |
29.12 mm for p = 2 | ||
RI | Operating Wavelength | 1550 nm |
SMF core RI | 1.4529 RIU | |
SMF cladding RI | 1.4440 RIU | |
CSF RI | 1.4440 RIU | |
Analyte RI | 1.0003 RIU |
Structure | Concentration Range (mg/dL) | Sensitivity (pm/(mg/dL)) | Ref. |
---|---|---|---|
GOx immobilized SMF microprobe | 0–300 | 17.4 | [34] |
SMF-TFG (tilted fiber grating)-SMF (GO–GOD) | 0–150 | 13.3 | [35] |
Fiber SPR & enzymatic reaction device | 0–400 | 5.27 | [36] |
GO based OFS | 0–200 | 10.403 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, C.; Monteiro, C.; Vaz, A.; Silva, S.; Frazão, O.; Novais, S. Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating. Sensors 2024, 24, 891. https://doi.org/10.3390/s24030891
Cunha C, Monteiro C, Vaz A, Silva S, Frazão O, Novais S. Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating. Sensors. 2024; 24(3):891. https://doi.org/10.3390/s24030891
Chicago/Turabian StyleCunha, Cristina, Catarina Monteiro, António Vaz, Susana Silva, Orlando Frazão, and Susana Novais. 2024. "Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating" Sensors 24, no. 3: 891. https://doi.org/10.3390/s24030891
APA StyleCunha, C., Monteiro, C., Vaz, A., Silva, S., Frazão, O., & Novais, S. (2024). Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating. Sensors, 24(3), 891. https://doi.org/10.3390/s24030891