Sol-Gel Synthesized Amorphous (InxGa1−x)2O3 for UV Photodetection with High Responsivity
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pearton, S.J.; Yang, J.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef]
- Wu, C.; Wu, F.; Ma, C.; Li, S.; Liu, A.; Yang, X.; Chen, Y.; Wang, J.; Guo, D. A general strategy to ultrasensitive Ga2O3 based self-powered solar-blind photodetectors. Mater. Today Phys. 2022, 23, 100643. [Google Scholar] [CrossRef]
- Yu, J.; Tian, N.; Deng, Y.F.; Zhang, H.H. Ultraviolet photodetector based on sol-gel synthesized MgZnO nanoparticle with photoconductive gain. J. Alloys Compd. 2016, 667, 359–362. [Google Scholar] [CrossRef]
- Yu, R.X.; Liu, G.X.; Wang, G.D.; Chen, C.M.; Xu, M.S.; Zhou, H.; Wang, T.L.; Yu, J.X.; Zhao, G.; Zhang, L. Ultrawide-bandgap semiconductor AlN crystals: Growth and applications. J. Mater. Chem. C 2021, 9, 1852–1873. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, X.; Zhou, D.; Ren, F.; Zhou, J.; Bai, S.; Lu, H.; Gu, S.; Zhang, R.; Zheng, Y.; et al. Carrier Transport and Gain Mechanisms in beta-Ga2O3-Based Metal-Semiconductor-Metal Solar-Blind Schottky Photodetectors. IEEE Trans. Electron Devices 2019, 66, 2276–2281. [Google Scholar] [CrossRef]
- Shen, H.; Yin, Y.; Tian, K.; Baskaran, K.; Duan, L.; Zhao, X.; Tiwari, A. Growth and characterization of β-Ga2O3 thin films by sol-gel method for fast-response solar-blind ultraviolet photodetectors. J. Alloys Compd. 2018, 766, 601–608. [Google Scholar] [CrossRef]
- Guo, D.Y.; Qin, X.Y.; Lv, M.; Shi, H.Z.; Su, Y.L.; Yao, G.S.; Wang, S.L.; Li, C.R.; Li, P.G.; Tang, W.H. Decrease of oxygen vacancy by Zn-doped for improving solar-blind photoelectric performance in beta-Ga2O3 thin films. Electron. Mater. Lett. 2017, 13, 483–488. [Google Scholar] [CrossRef]
- Liang, H.L.; Cui, S.J.; Su, R.; Guan, P.F.; He, Y.H.; Yang, L.H.; Chen, L.M.; Zhang, Y.H.; Mei, Z.X.; Du, X.L. Flexible X-ray Detectors Based on Amorphous Ga2O3 Thin Films. ACS Photonics 2019, 6, 351–359. [Google Scholar] [CrossRef]
- Ouyang, W.X.; Teng, F.; Jiang, M.M.; Fang, X.S. ZnO Film UV Photodetector with Enhanced Performance: Heterojunction with CdMoO4 Microplates and the Hot Electron Injection Effect of Au Nanoparticles. Small 2017, 13, 1702177. [Google Scholar] [CrossRef]
- Teng, F.; Ouyang, W.X.; Li, Y.M.; Zheng, L.X.; Fang, X.S. Novel Structure for High Performance UV Photodetector Based on BiOCl/ZnO Hybrid Film. Small 2017, 13, 1700156. [Google Scholar] [CrossRef]
- Wang, F.X.; Wang, Z.; Fan, S.Y.; Li, M. The effect of structural parameters on AlGaN solar-blind metal-semiconductor-metal (MSM) photodetectors. Opt. Quantum Electron. 2021, 53, 671. [Google Scholar] [CrossRef]
- Kim, K.P.; Chang, D.; Lim, S.K.; Lee, S.K.; Lyu, H.K.; Hwang, D.K. Thermal annealing effects on the dynamic photoresponse properties of Al-doped ZnO nanowires network. Curr. Appl. Phys. 2011, 11, 1311–1314. [Google Scholar] [CrossRef]
- Shabannia, R. High-sensitivity UV photodetector based on oblique and vertical Co-doped ZnO nanorods. Mater. Lett. 2018, 214, 254–256. [Google Scholar] [CrossRef]
- Shabannia, R.; Naderi, N. High UV-to-Visible Rejection Ratio and Low Cost UV Photodetector Based on Co-Doped ZnO Nanorods Grown on Polyethylene Terephthalate Substrate. J. Nanoelectron. Optoelectron. 2019, 14, 1368–1373. [Google Scholar] [CrossRef]
- Young, S.J.; Liu, Y.H. Low-frequency noise properties of MgZnO nanorod ultraviolet photodetectors with and without UV illumination. Sens. Actuators A Phys. 2018, 269, 363–368. [Google Scholar] [CrossRef]
- Dai, W.; Pan, X.H.; Chen, S.S.; Chen, C.; Chen, W.; Zhang, H.H.; Ye, Z.Z. ZnO homojunction UV photodetector based on solution-grown Sb-doped p-type ZnO nanorods and pure n-type ZnO nanorods. RSC Adv. 2014, 5, 6311–6314. [Google Scholar] [CrossRef]
- Raj, I.L.P.; Valanarasu, S.; Vinoth, S.; Chidhambaram, N.; Isaac, R.S.R.; Ubaidullah, M.; Shaikh, S.F.; Pandit, B. Highly sensitive ultraviolet photodetectors fabricated from rare earth metal ions doped NiO thin films via nebulizer spray pyrolysis method. Sens. Actuators A Phys. 2021, 333, 113242. [Google Scholar] [CrossRef]
- Rajamanickam, S.; Mohammad, S.M.; Razak, I.A.; Muhammad, A.; Abed, S.M. Enhanced sensitivity from Ag micro-flakes encapsulated Ag-doped ZnO nanorods-based UV photodetector. Mater. Res. Bull. 2023, 161, 112148. [Google Scholar] [CrossRef]
- Yadav, P.V.K.; Ajitha, B.; Ahmed, C.M.A.; Reddy, Y.A.K.; Reddy, V.R.M. Superior UV photodetector performance of TiO2 films using Nb doping. J. Phys. Chem. Solids 2021, 160, 110350. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Liu, X.Y.; Yan, L.M.; Xu, R.L.; Chen, Y.; Zhou, J.R.; Ruan, S.P. Ytterbium doping reduces the dark current of UV photoelectric detector based on TiO2. Mater. Chem. Phys. 2023, 293, 126966. [Google Scholar] [CrossRef]
- Swallow, J.E.N.; Palgrave, R.G.; Murgatroyd, P.A.E.; Regoutz, A.; Lorenz, M.; Hassa, A.; Grundmann, M.; von Wenckstern, H.; Varley, J.B.; Veal, T.D. Indium Gallium Oxide Alloys: Electronic Structure, Optical Gap, Surface Space Charge, and Chemical Trends within Common-Cation Semiconductors. ACS Appl. Mater. Interfaces 2021, 13, 2807–2819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Shi, J.L.; Qi, D.C.; Chen, L.; Zhang, K.H.L. Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater. 2020, 8, 020906. [Google Scholar] [CrossRef]
- Chang, S.-P.; Chang, L.-Y.; Li, J.-Y. The Influence of Different Partial Pressure on the Fabrication of InGaO Ultraviolet Photodetectors. Sensors 2016, 16, 2145. [Google Scholar] [CrossRef] [PubMed]
- Kokubun, Y.; Abe, T.; Nakagomi, S. Sol-gel prepared (Ga1−xInx)2O3 thin films for solar-blind ultraviolet photodetectors. Phys. Status Solidi A-Appl. Mater. Sci. 2010, 207, 1741–1745. [Google Scholar] [CrossRef]
- Chen, K.-Y.; Hsu, C.-C.; Yu, H.-C.; Peng, Y.-M.; Yang, C.-C.; Su, Y.-K. The Effect of Oxygen Vacancy Concentration on Indium Gallium Oxide Solar Blind Photodetector. IEEE Trans. Electron Devices 2018, 65, 1817–1822. [Google Scholar] [CrossRef]
- Hatipoglu, I.; Mukhopadhyay, P.; Alema, F.; Sakthivel, T.S.; Seal, S.; Osinsky, A.; Schoenfeld, W.V. Tuning the responsivity of monoclinic (InxGa1−x)2O3 solar-blind photodetectors grown by metal organic chemical vapor deposition. J. Phys. D Appl. Phys. 2020, 53, 454001. [Google Scholar] [CrossRef]
- Nakagomi, S.; Kokubun, Y. Crystal orientation of beta-Ga2O3 thin films formed on c-plane and a-plane sapphire substrate. J. Cryst. Growth 2012, 349, 12–18. [Google Scholar] [CrossRef]
- Zhang, M.X.; Yu, H.; Li, H.; Jiang, Y.; Qu, L.H.; Wang, Y.X.; Gao, F.; Feng, W. Ultrathin In2O3 Nanosheets toward High Responsivity and Rejection Ratio Visible-Blind UV Photodetection. Small 2023, 19, 2205623. [Google Scholar] [CrossRef]
- Wouters, C.; Sutton, C.; Ghiringhelli, L.M.; Markurt, T.; Schewski, R.; Hassa, A.; von Wenckstern, H.; Grundmann, M.; Scheffler, M.; Albrecht, M. Investigating the ranges of (meta)stable phase formation in (InxGa1−x)2O3: Impact of the cation coordination. Phys. Rev. Mater. 2020, 4, 125001. [Google Scholar] [CrossRef]
- Lee, C.T.; Liu, Y.H.; Lee, H.Y. Stacked Triple Ultraviolet-Band Metal-Semiconductor-Metal Photodetectors. IEEE Photonics Technol. Lett. 2019, 31, 15–18. [Google Scholar] [CrossRef]
- Peelaers, H.; Steiauf, D.; Varley, J.B.; Janotti, A.; Van de Walle, C.G. (InxGa1−x)2O3 alloys for transparent electronics. Phys. Rev. B 2015, 92, 085206. [Google Scholar] [CrossRef]
- Remashan, K.; Hwang, D.K.; Park, S.D.; Bae, J.W.; Yeom, G.Y.; Park, S.J.; Jang, J.H. Effect of N2O plasma treatment on the performance of ZnO TFTs. Electrochem. Solid-State Lett. 2008, 11, H55–H59. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.X.; Yin, L.; Cheng, R.Q.; Wang, J.J.; Wen, Y.; Shifa, T.A.; Wang, F.M.; Zhang, Y.; Zhan, X.Y.; et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev. 2018, 47, 6296–6341. [Google Scholar] [CrossRef]
- Kneiss, M.; Hassa, A.; Splith, D.; Sturm, C.; von Wenckstern, H.; Lorenz, M.; Grundmann, M. Epitaxial stabilization of single phase κ-(InxGa1−x)2O3 thin films up to x = 0.28 on c-sapphire and κ-Ga2O3(001) templates by tin-assisted VCCS-PLD. APL Mater. 2019, 7, 101102. [Google Scholar] [CrossRef]
- von Wenckstern, H.; Splith, D.; Werner, A.; Müller, S.; Lorenz, M.; Grundmann, M. Properties of Schottky Barrier Diodes on (InxGa1−x)2O3 for 0.01 ≤ x ≤ 0.85 Determined by a Combinatorial Approach. ACS Comb. Sci. 2015, 17, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Bi, Z.; Zhang, Y.; Zhang, Y.; Liu, X.; Ma, Y.; Li, X.; Liu, C.; Chen, Y.; Zhou, J.; Ruan, S. MSM UV photodetector with low dark current based on GaInO/SrTiO3 heterojunction. Mater. Sci. Semicond. Process. 2024, 170, 107973. [Google Scholar] [CrossRef]
- Mohamed, M.; Irmscher, K.; Janowitz, C.; Galazka, Z.; Manzke, R.; Fornari, R. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl. Phys. Lett. 2012, 101, 132106. [Google Scholar] [CrossRef]
- Ryu, B.; Noh, H.-K.; Choi, E.-A.; Chang, K.J. O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors. Appl. Phys. Lett. 2010, 97, 022108. [Google Scholar] [CrossRef]
- Guo, D.Y.; Wu, Z.P.; An, Y.H.; Guo, X.C.; Chu, X.L.; Sun, C.L.; Li, L.H.; Li, P.G.; Tang, W.H. Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors. Appl. Phys. Lett. 2014, 105, 023507. [Google Scholar] [CrossRef]
- Feng, P.; Monch, I.; Harazim, S.; Huang, G.S.; Mei, Y.F.; Schmidt, O.G. Giant Persistent Photoconductivity in Rough Silicon Nanomembranes. Nano Lett. 2009, 9, 3453–3459. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.D.; Kung, S.C.; van der Veer, W.E.; Yan, W.B.; Ayvazian, T.; Kim, J.Y.; Penner, R.M. High-Throughput Fabrication of Photoconductors with High Detectivity, Photosensitivity, and Bandwidth. ACS Nano 2012, 6, 5627–5634. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Bando, Y.; Liao, M.; Koide, Y.; Golberg, D. Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire. Appl. Phys. Lett. 2010, 97, 161102. [Google Scholar] [CrossRef]
- Chang, T.H.; Chang, S.J.; Weng, W.Y.; Chiu, C.J.; Wei, C.Y. Amorphous Indium-Gallium-Oxide UV Photodetectors. IEEE Photonics Technol. Lett. 2015, 27, 2083–2086. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, D.; Li, Y.; Lin, R.; Zheng, W.; Huang, F. High-Performance Solar Blind Ultraviolet Photodetector Based on Single Crystal Orientation Mg-Alloyed Ga2O3 Film Grown by a Nonequilibrium MOCVD Scheme. ACS Appl. Electron. Mater. 2019, 1, 1653–1659. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, Z.; Guo, D.; Cui, W.; Li, P.; An, Y.; Li, L.; Tang, W. Growth and characterization of alpha-phase Ga2−xSnxO3 thin films for solar-blind ultraviolet applications. Semicond. Sci. Technol. 2016, 31, 065010. [Google Scholar] [CrossRef]
β-Ga2O3 | In0.2Ga1.8O3 | In0.4Ga1.6O3 | In0.6Ga1.4O3 | |
---|---|---|---|---|
Eg (eV) | 4.84 | 4.46 | 4.28 | 4.18 |
Ilight (A) | 2.0 × 10−10 | 5.32 × 10−8 | 2.34 × 10−5 | 7.59 × 10−4 |
Idark (A) | 5.1 × 10−11 | 1.0 × 10−10 | 8.2 × 10−9 | 3.1 × 10−6 |
Ilight to Idark ratio | 4 | 532 | 2853 | 253 |
R (AW−1) | 0.00433@260 nm | 1.86@260 nm | 739.2@260 nm | 20,579@270 nm |
NEP (W Hz−1/2) | 9.23 × 10−13@260 nm | 3.04 × 10−15@260 nm | 6.93 × 10−17@260 nm | 4.76 × 10−17@270 nm |
D* (Jones) | 6.68 × 108@260 nm | 2.03 × 1011@260 nm | 8.89 × 1012@260 nm | 1.29 × 1013@270 nm |
τr (s) | 0.57 | 3.58 | 6.23 | 9.42 |
τd (s) | 0.07 | 0.76 | 4.18 | 18.63 |
Material | Vbias (V) | Il (A) | Il/Id | Responsivity (A/W) | Ref. |
---|---|---|---|---|---|
InGaO | 5 | 1.9 × 10−9 | 82.6 | 6.9 × 10−5@270 nm | [43] |
(InxGa1−x)2O3 | 5 | 3.1 × 10−5 | 1.3 × 103 | 27.7@255 nm | [25] |
(MgxGa1−x)2O3 | 5 | 1.4 × 10−5 | ~105 | 8.9@254 nm | [44] |
Mg0.18Zn0.82O | 13 | 1.2 × 10−6 | 2 | 0.2@322 nm | [3] |
In0.9Ga0.1O | 10 | 5.0 × 10−6 | ~105 | 0.31@300 nm | [23] |
Ga2-xSnxO3 | 50 | 8.7 × 10−7 | 1.4 × 102 | 9.6 × 10−2@254 nm | [45] |
In0.4Ga1.6O3 | 5 | 2.3 × 10−5 | 2.8 × 103 | 739.2@260 nm | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhou, R.; Liu, X.; Bi, Z.; Ruan, S.; Ma, Y.; Li, X.; Liu, C.; Chen, Y.; Zhou, J. Sol-Gel Synthesized Amorphous (InxGa1−x)2O3 for UV Photodetection with High Responsivity. Sensors 2024, 24, 787. https://doi.org/10.3390/s24030787
Zhang Y, Zhou R, Liu X, Bi Z, Ruan S, Ma Y, Li X, Liu C, Chen Y, Zhou J. Sol-Gel Synthesized Amorphous (InxGa1−x)2O3 for UV Photodetection with High Responsivity. Sensors. 2024; 24(3):787. https://doi.org/10.3390/s24030787
Chicago/Turabian StyleZhang, Yupeng, Ruiheng Zhou, Xinyan Liu, Zhengyu Bi, Shengping Ruan, Yan Ma, Xin Li, Caixia Liu, Yu Chen, and Jingran Zhou. 2024. "Sol-Gel Synthesized Amorphous (InxGa1−x)2O3 for UV Photodetection with High Responsivity" Sensors 24, no. 3: 787. https://doi.org/10.3390/s24030787
APA StyleZhang, Y., Zhou, R., Liu, X., Bi, Z., Ruan, S., Ma, Y., Li, X., Liu, C., Chen, Y., & Zhou, J. (2024). Sol-Gel Synthesized Amorphous (InxGa1−x)2O3 for UV Photodetection with High Responsivity. Sensors, 24(3), 787. https://doi.org/10.3390/s24030787