Modal Analysis with Asymptotic Strips Boundary Conditions of Skewed Helical Gratings on Dielectric Pipes as Cylindrical Metasurfaces for Multi-Beam Holographic Rod Antennas
Abstract
:1. Introduction
2. Description of the Structure
3. Theory and Formulation
3.1. Fields in Various Regions via Vector Potentials
3.2. Boundary Conditions: Standard Ones and ASBC
3.3. Matrix Equation
3.4. Far-Field Radiation
4. Validation with Independent Solver
5. Holographic Rod Antenna
5.1. Surface Impedance Tensor Fundamentals
5.2. Holography Theorem
5.3. Cylindrical Topology
6. Computed Results
6.1. Holographic Rod Antennas
6.1.1. Single Beam
- (a)
- 60°, TM polarized
- (b)
- 40° designed (realized 38°), TE polarized
6.1.2. Dual Beams
- (a)
- 35° & 50°, TM polarization
- (b)
- 40° & 60°, TE polarization
6.1.3. Matching Sections
6.1.4. Summary of Performance
7. Experiments and Measurements
7.1. Modal Dispersion
7.2. Far Field Radiation Patterns
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hondros, D.; Debye, P. Elektromagnetische Wellen an dielektrischen Drähten. Ann. Phys. 1910, 337, 465–476. [Google Scholar] [CrossRef]
- Kumar, C.; Srinivasan, V.V.; Lakshmeesha, V.K.; Pal, S. Design of Short Axial Length High Gain Dielectric Rod Antenna. IEEE Trans. Antennas Propag. 2010, 58, 4066–4069. [Google Scholar] [CrossRef]
- Huang, K.-C.; Wang, Z.C. V-band patch-fed rod antennas for high data-rate wireless communications. IEEE Trans. Antennas Propag. 2006, 54, 297–300. [Google Scholar] [CrossRef]
- Whitman, G.M.; Pinthong, C.; Chen, W.-Y.; Schwering, F.K. Rigorous TE solution to the dielectric wedge antenna fed by a slab waveguide. IEEE Trans. Antennas Propag. 2006, 54, 101–114. [Google Scholar] [CrossRef]
- Ando, T.; Yamauchi, J.; Nakano, H. Numerical analysis of a dielectric rod antenna—Demonstration of the discontinuity-radiation concept. IEEE Trans. Antennas Propag. 2003, 51, 2007–2013. [Google Scholar] [CrossRef]
- Ando, T.; Ohba, I.; Numata, S.; Yamauchi, J.; Nakano, H. Linearly and curvilinearly tapered cylindrical- dielectric-rod antennas. IEEE Trans. Antennas Propag. 2005, 53, 2827–2833. [Google Scholar] [CrossRef]
- Rousstia, M.W.; Reniers, A.C.F.; Herben, M.H.A.J. Switched-beam array of dielectric rod antenna with RF-MEMS switch for millimeter-wave applications. Radio Sci. 2015, 50, 177–190. [Google Scholar] [CrossRef]
- Saffold, G. Theory and Application of Dielectric Rod Antennas and Arrays. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2021. [Google Scholar]
- Federal Communications Commission. Spectrum Frontiers R&O and FNPRM: FCC16-89. arXiv 2016, arXiv:1011.1669v3. [Google Scholar]
- Maci, S.; Minatti, G.; Casaletti, M.; Bosiljevac, M. Metasurfing: Addressing Waves on Impenetrable Metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1499–1502. [Google Scholar] [CrossRef]
- El-Muslimany, M.A.; El-Diwany, E.; El-Hennawy, H. Analysis of circular cylindrical dielectric rod leaky wave antenna with periodic strips and TE circularly symmetric wave. In Proceedings of the Fifteenth National Radio Science Conference. NRSC ‘98 (Cat. No.98EX109), Cairo, Egypt, 24–26 February 1998. [Google Scholar] [CrossRef]
- Schwering, F.; Oliner, A.A. Millimeter-Wave Antennas. In Antenna Handbook; Lo, Y.T., Lee, S.W., Eds.; Springer: Greer, SC, USA, 1988; pp. 1135–1282. [Google Scholar]
- Saleh, A.M.; Mahmoud, K.R.; Ibrahim, I.I. Metasurface-loaded dielectric rod leaky wave antenna. J. Electromagn. Waves Appl. 2016, 30, 1277–1291. [Google Scholar] [CrossRef]
- Palikaras, G.K.; Feresidis, A.P.; Vardaxoglou, Y.C. Cylindrical electromagnetic bandgap structures for directive base station antennas. IEEE Antennas Wirel. Propag. Lett. 2004, 3, 87–89. [Google Scholar] [CrossRef]
- Palikaras, G.K.; Feresidis, A.P.; Vardaxoglou, Y.C. Cylindrical EBG surfaces for omni-directional wireless LAN antennas. In Proceedings of the 2005 IEEE Antennas and Propagation Society International Symposium, Washington, DC, USA, 3–8 July 2005; pp. 339–342. [Google Scholar]
- Boutayeb, H.; Denidni, T.A.; Mahdjoubi, K.; Tarot, A.-C.; Sebak, A.-R.; Talbi, L. Analysis and design of a cylindrical EBG-based directive antenna. IEEE Trans. Antennas Propag. 2006, 54, 211–219. [Google Scholar] [CrossRef]
- Palikaras, G.K.; Feresidis, A.P.; Vardaxoglou, Y.C. Design of cylindrical omni-directional patch antenna with superimposed EBG surfaces. In Proceedings of the 2007 Loughborough Antennas and Propagation Conference, Loughborough, UK, 2–3 April 2007; pp. 297–300. [Google Scholar]
- Biancotto, C.; Record, P. Design of a beam forming dielectric cylindrical EBG antenna. Prog. Electromag. Res. B 2009, 18, 327–346. [Google Scholar] [CrossRef]
- Agrawal, A.K.; Powell, W.E. A printed circuit cylindrical array antenna. IEEE Trans. Antennas Propag. 1986, 34, 1288–1293. [Google Scholar] [CrossRef]
- Hussain, M.G.M. Theory and analysis of adaptive cylindrical array antenna for ultrawideband wireless communications. IEEE Trans. Wirel. Commun. 2005, 4, 3075–3083. [Google Scholar] [CrossRef]
- Rammal, H.; Olleik, C.; Sabbah, K.; Rammal, M.; Vaudon, P. Synthesis of phased cylindrical arc antenna arrays. Int. J. Antennas Propag. 2009, 2009, 691625. [Google Scholar] [CrossRef]
- Padooru, Y.; Yakovlev, A.B.; Chen, P.; Alù, A. Analytical Modeling of Conformal Mantle Cloaks for Cylindrical Objects using Sub-Wavelength Printed and Slotted Arrays. J. Appl. Phys. 2012, 112, 034907. [Google Scholar] [CrossRef]
- Engheta, N.; Ziolkowski, R. (Eds.) Metamaterials: Physics and Engineering Explorations; J. Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Vogel, P.; Genzel, L. Transmission and reflection of metallic mesh in the far infrared. Infrared Phys. 1964, 4, 257–262. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Costley, A.E.; Cunningham, C.T.; Mok, C.L.; Neill, C.L.; Parker, T.J. Free-standing grids wound from 5 μm diameter wire for spectroscopy at far-infrared wavelengths. Infrared Phys. 1979, 19, 599–601. [Google Scholar] [CrossRef]
- Auton, J.P. Infrared transmission polarizers by photolithography. Appl. Opt. 1967, 6, 1023–1027. [Google Scholar] [CrossRef]
- Costley, A.E.; Hursey, K.H.; Neill, G.F.; Ward, J.M. Free-standing fine-wire grids: Their manufacture, performance, and use at millimeter and submillimeter wavelengths. J. Opt. Soc. Am. 1977, 67, 979–981. [Google Scholar] [CrossRef]
- Mok, C.L.; Chambers, W.G.; Parker, T.J.; Costley, A.E. The far-infrared performance and application of free-standing grids wound from 5 μm diameter tungsten wire. Infrared Phys. 1979, 19, 437–442. [Google Scholar] [CrossRef]
- Bird, G.R.; Parrish, M. The wire grid as a near-infrared polarizer. J. Opt. Soc. Am. 1960, 50, 886–891. [Google Scholar] [CrossRef]
- Kim, D. Polarization characteristics of a wire-grid polarizer in a rotating platform. Appl. Opt. 2005, 44, 1366–1371. [Google Scholar] [CrossRef]
- Young, J.B.; Graham, H.A.; Peterson, E.W. Wire grid infrared polarizer. Appl. Opt. 1965, 4, 1023–1026. [Google Scholar] [CrossRef]
- Mitsuihi, A.; Otsuka, Y.; Fujita, S.; Yoshinaga, H. Metal mesh filters in the far infrared region. Jpn. J. Appl. Phys. 1963, 2, 574–577. [Google Scholar] [CrossRef]
- Ulrich, R. Far-infrared properties of metallic mesh and its complementary structure. Infrared Phys. 1967, 7, 37–55. [Google Scholar] [CrossRef]
- Ressler, G.M.; Möller, K.D. Far infrared bandpass filters and measurements on a reciprocal grid. Appl. Opt. 1967, 6, 893–896. [Google Scholar] [CrossRef]
- Rawcliffe, R.D.; Randall, C.M. Metal mesh interference filters for the far infrared. Appl. Opt. 1967, 6, 1353–1358. [Google Scholar] [CrossRef]
- Bell, R.J.; Romero, H.V.; Blea, J.M. Theory and experiments for multielement grid filters in a dielectric. Appl. Opt. 1970, 9, 2350–2358. [Google Scholar] [CrossRef]
- Holah, G.D.; Smith, S.D. Far infrared interference filters. J. Phys. E Sci. Instrum. 1977, 10, 101–111. [Google Scholar] [CrossRef]
- Holah, G.D.; Morrison, N. Narrow-bandpass interference filters for the far infrared. J. Opt. Soc. Am. 1977, 67, 971–974. [Google Scholar] [CrossRef]
- Sakai, K.; Genzel, L. Far infrared metal mesh filters and Fabry-Perot interferometers. In Reviews of Infrared and Millimeter Waves; Button, K.J., Ed.; Plenum: New York, NY, USA, 1983; Volume 1. [Google Scholar]
- Ulrich, R.; Renk, K.F.; Genzel, L. Tunable submillimeter interferometers of the Fabry-Perot type. IEEE Trans. Microw. Theory Tech. 1963, 11, 363–371. [Google Scholar] [CrossRef]
- Balakhanov, V.Y. Properties of a Fabry-Perot interferometer with mirrors in the form of a backed metal grid. Sov. Phys. Dokl. 1966, 10, 788–790. [Google Scholar]
- McPhedran, R.C.; Maystre, D. On the theory and solar application of inductive grids. Appl. Phys. 1977, 14, 1–20. [Google Scholar] [CrossRef]
- Belland, P.; Lecullier, J.C. Scanning Fabry-Perot interferometer: Performance and optimum use in the far infrared range. Appl. Opt. 1980, 19, 1946–1952. [Google Scholar] [CrossRef]
- Culshaw, W. Resonators for millimeter and submillimeter wavelengths. IRE Trans. Microw. Theory Tech. 1961, 9, 135–144. [Google Scholar] [CrossRef]
- Ulrich, R.; Bridges, T.J.; Pollack, M.A. Variable metal mesh coupler for far infrared lasers. Appl. Opt. 1970, 9, 2511–2516. [Google Scholar] [CrossRef] [PubMed]
- Danielewicz, E.J.; Plant, T.K.; De Temple, T.A. Hybrid output mirror for optically pumped far infrared lasers. Opt. Commun. 1975, 13, 366–369. [Google Scholar] [CrossRef]
- Danielewicz, E.J.; Coleman, P.D. Hybrid metal mesh dielectric mirrors for optically pumped far infrared lasers. Appl. Opt. 1976, 15, 761–767. [Google Scholar] [CrossRef]
- Schubert, M.R.; Durschlag, M.S.; De Temple, T.A. Diffraction limited CW optically pumped lasers. IEEE J. Quantum Electron. 1977, 13, 455–459. [Google Scholar]
- Weitz, D.A.; Skocpol, W.J.; Tinkham, M. Capacitive-mesh output couplers for optically pumped far-infrared lasers. Opt. Lett. 1978, 3, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, S.M.; Button, K.J.; Waldman, J.; Cohn, D.R. Modulated submillimeter laser interferometer system for plasma density measurements. Appl. Opt. 1976, 15, 2645–2648. [Google Scholar] [CrossRef]
- Shanahan, S.T.; Heckenberg, N.R. Transmission line model of substrate effects on capacitive mesh couplers. Appl. Opt. 1981, 20, 4019–4023. [Google Scholar] [CrossRef] [PubMed]
- Kehn, M.N.M.; Li, J.Y. Modal analysis of corrugated plasmonic rods for the study of field localization, conductor attenuation and dielectric losses. IEEE Trans. Microw. Theory Tech. 2018, 66, 1684–1700. [Google Scholar] [CrossRef]
- Ng Mou Kehn, M. Corrugated waveguides with stepped ridges and stratified core: Reduction of metal and aperture losses and study of thermal and RF breakdown. IEEE Trans. Microw. Theory Tech. 2017, 65, 1407–1421. [Google Scholar] [CrossRef]
- Chin, C.F.; Kehn, M.N.M. Efficient analysis of longitudinally corrugated rods using asymptotic boundary conditions for investigation of conductor losses and plasmonic field localization. IEEE Trans. Antennas Propag. 2019, 67, 3185–3199. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Kehn, M.N.M. Analysis of strip-grated dielectric-coated rods by asymptotic strip boundary conditions for studies of dielectric losses and field localization. IEEE Trans. Microw. Theory Tech. 2019, 67, 1740–1752. [Google Scholar] [CrossRef]
- Lai, W.-Y.; Kehn, M.N.M. Analysis of doubly-stacked rotated gratings using asymptotic corrugations boundary conditions. IEEE Trans. Antennas Propag. 2019, 67, 4693–4707. [Google Scholar] [CrossRef]
- Ng Mou Kehn, M.; Chen, C.Z. Analysis of leaky-wave radiation from corrugated parallel-plate waveguides with steerable beams by rotatable corrugations. IEEE Trans. Antennas Propag. 2021, 69, 5455–5468. [Google Scholar] [CrossRef]
- Ng Mou Kehn, M.; Wu, C.Y. Analysis by asymptotic boundary conditions of strip-grated dielectric pipe over dielectric rod with wide total band-gap as multi-frequency cylindrical leaky-wave antennas. IEEE Access 2022, 10, 108651–108667. [Google Scholar] [CrossRef]
- Kock, W. Microwave Holography. Microwaves 1968, 7, 46–54. [Google Scholar]
- Rusch, C. Holographic Antennas. In Handbook of Antenna Technologies; Springer Science + Business Media: Singapore, 2015. [Google Scholar]
- Checcacci, P.; Russo, V.; Scheggi, A. Holographic antennas. IEEE Trans. Antennas Propag. 1970, 18, 811–813. [Google Scholar] [CrossRef]
- Sharma, P.K.; Bansal, A.; Chung, J.-Y. Conformal holographic Metasurface-Based Beamforming Antenna using a 3D-Printed Flexible Substrate. TechRxiv 2024. [Google Scholar] [CrossRef]
- Zadeh, M.A.C.; Komjani, N.; Zohrevand, S. Holographic Technique Inspired Multi-Beam Cylindrical Leaky-Wave Antenna. In Proceedings of the 2023 31st International Conference on Electrical Engineering (ICEE), Tehran, Iran, 9–11 May 2023; pp. 474–478. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Q.; Kong, X.; Liu, H.; Han, J.; Li, L. Multifeed beam-switchable cylindrical conformal holographic metasurface antenna. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 970–974. [Google Scholar] [CrossRef]
- Wang, H.; Yu, S.; Kou, N. Design of cylindrical holographic impedance metasurface for near-field focusing. Prog. Electromagn. Res. Lett. 2022, 106, 129–134. [Google Scholar] [CrossRef]
- Cai, S.; Chen, J.; Liu, X.; Fu, G.; Liu, G.; Chen, J.; Tang, C.; Du, W.; Liu, Z. Perfect intrinsic and nonlinear chirality simultaneously driven by half-integer topological charge. Phy. Rev. B 2024, 109, 165420. [Google Scholar] [CrossRef]
- Kelvin, W.T. The Molecular Tactics of a Crystal; Clarendon Press: Oxford, UK, 1894; p. 27. [Google Scholar]
- Kuen, L.; Loffler, L.; Tsarapkin, A.; Zschiedrich, L.; Feichtner, T.; Burger, S.; Hoflich, K. Chiral and directional optical emission from a dipole source coupled to a helical plasmonic antenna. Appl. Phys. Lett. 2024, 124, 231102. [Google Scholar] [CrossRef]
- Oh, S.S.; Hess, O. Chiral metamaterials: Enhancement and control of optical activity and circular dichroism. Nano Converg. 2015, 2, 24. [Google Scholar] [CrossRef] [PubMed]
- Kildal, P.-S. Foundations of Antennas, A Unified Approach; Studentlitteratur: Lund, Sweden, 2000. [Google Scholar]
Sec. No. | 1 | 2 | 3 | 4 |
---|---|---|---|---|
(εin/ε0) | 3.9 | 5.6 | 7.3 | 9.0 |
(εout/ε0) | 3.85 | 3.9 | 3.95 | 4.0 |
Configuration | ℓsec (mm) | S11 (dB) |
---|---|---|
No matching | 0 | −16.874035 |
A | 1.2956525 | −17.13643 |
B | 2.591305 | −18.1257 |
C | 5.18261 | −17.766612 |
D | 10.36522 | −17.423341 |
Case | Directivity (dBi) | |S11| (dB) | Gain (dBi) | Eff. (dB) | ||
---|---|---|---|---|---|---|
TM 60° | 8.241 | −14.732 | 8.0924 | −3.577 | ||
TE 40° | 7.215 | −15.65 | 7.0948 | −3.1724 | ||
TM 35° & 50° | 7.3 (35°) | 6.8 (50°) | −18.126 | 7.23 (35°) | 6.734 (50°) | −3.766 |
TE 40° & 60° | 7.1055 (40°) | 6.179 (60°) | −15.176 | 6.9716 (40°) | 6.0452 (60°) | −2.507 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng Mou Kehn, M.; Lin, T.-W.; Chen, W.-C. Modal Analysis with Asymptotic Strips Boundary Conditions of Skewed Helical Gratings on Dielectric Pipes as Cylindrical Metasurfaces for Multi-Beam Holographic Rod Antennas. Sensors 2024, 24, 8119. https://doi.org/10.3390/s24248119
Ng Mou Kehn M, Lin T-W, Chen W-C. Modal Analysis with Asymptotic Strips Boundary Conditions of Skewed Helical Gratings on Dielectric Pipes as Cylindrical Metasurfaces for Multi-Beam Holographic Rod Antennas. Sensors. 2024; 24(24):8119. https://doi.org/10.3390/s24248119
Chicago/Turabian StyleNg Mou Kehn, Malcolm, Ting-Wei Lin, and Wei-Chuan Chen. 2024. "Modal Analysis with Asymptotic Strips Boundary Conditions of Skewed Helical Gratings on Dielectric Pipes as Cylindrical Metasurfaces for Multi-Beam Holographic Rod Antennas" Sensors 24, no. 24: 8119. https://doi.org/10.3390/s24248119
APA StyleNg Mou Kehn, M., Lin, T.-W., & Chen, W.-C. (2024). Modal Analysis with Asymptotic Strips Boundary Conditions of Skewed Helical Gratings on Dielectric Pipes as Cylindrical Metasurfaces for Multi-Beam Holographic Rod Antennas. Sensors, 24(24), 8119. https://doi.org/10.3390/s24248119