Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Illustration of Impedance Measurements
3.2. Feature Extraction
3.3. Training Regression Models Using Neural Networks
Feature Set | Number of Features | R2 |
---|---|---|
Raw EIS data + + | 404 | 0.76 |
Extracted EIS + + | 12 | 0.94 |
Extracted EIS + | 11 | 0.92 |
Extracted EIS + | 11 | 0.91 |
Extracted EIS | 10 | 0.87 |
3.4. Feature Selection for Estimating Bentonite Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Declaration of Generative AI Use
Conflicts of Interest
References
- Clem, A.G.; Doehler, R.W. Industrial Applications of Bentonite. Clays Clay Miner. 1961, 10, 272–283. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Tsukimura, K.; Morimoto, K.; Suzuki, M.; Takagi, T. Comparison of methylene blue adsorption on bentonite measured using the spot and colorimetric methods. Appl. Clay Sci. 2018, 151, 140–147. [Google Scholar] [CrossRef]
- Holtzer, M.; Grabowska, B.; Bobrowski, A.; Żymankowska-Kumon, S. Methods of the montmorillonite content determination in foundry bentonites. Arch. Foundry Eng. 2009, 9, 69–72. [Google Scholar]
- Yoo, D.J.; Oh, M.; Kim, Y.S.; Park, J. Influences of Solution and Mixed Soil on Estimating Bentonite Content in Slurry Using Electrical Conductivity. Appl. Clay Sci. 2009, 43, 408–414. [Google Scholar] [CrossRef]
- Ishida, T.; Makino, T.; Wang, A. Dielectric-Relaxation Spectroscopy of Kaolinite, Montmorillonite, Allophane, and Imogolite under Moist Conditions. Clays Clay Miner. 2000, 48, 75–84. [Google Scholar] [CrossRef]
- Lin, C.; Li, W.; Li, Z.; Wang, Z.; Lu, S.; Liu, Q. Investigation of the Hydration Properties of Cement with EDTA by Alternative Current Impedance Spectroscopy. Cement Concr. Compos. 2022, 126, 104365. [Google Scholar] [CrossRef]
- Kamińska, J.; Puzio, S.; Angrecki, M.; Stachowicz, M. The Effect of the Addition of Bentonite Clay to Traditional Sand Mixtures on the Surface Quality of Iron Castings. J. Ecol. Eng. 2020, 21, 160–167. [Google Scholar] [CrossRef]
- Kanoun, O. (Ed.) Impedance Spectroscopy, 1st ed.; De Gruyter: Berlin, Germany, 2018; pp. 1–11. [Google Scholar]
- Nara, H.; Yokoshima, T.; Osaka, T. Technology of Electrochemical Impedance Spectroscopy for an Energy-Sustainable Society. Curr. Opin. Electrochem. 2020, 20, 66–77. [Google Scholar] [CrossRef]
- Bongiorno, V.; Gibbon, S.; Michailidou, E.; Curioni, M. Exploring the use of machine learning for interpreting electrochemical impedance spectroscopy data: Evaluation of the training dataset size. Corros. Sci. 2022, 198, 110–119. [Google Scholar] [CrossRef]
- Xiong, R.; Tian, J.; Shen, W.; Lu, J.; Sun, F. Semi-Supervised Estimation of Capacity Degradation for Lithium-Ion Batteries with Electrochemical Impedance Spectroscopy. J. Energy Chem. 2023, 76, 404–413. [Google Scholar] [CrossRef]
- Doonyapisut, D.; Kannan, P.; Kim, B.; Kim, J.K.; Lee, E.; Chung, C. Analysis of Electrochemical Impedance Data: Use of Deep Neural Networks. Adv. Intell. Syst. 2023, 5, 2300085. [Google Scholar] [CrossRef]
- Buteau, S.; Dahn, J. Analysis of Thousands of Electrochemical Impedance Spectra of Lithium-Ion Cells through a Machine Learning Inverse Model. J. Electrochem. Soc. 2019, 166, A1611–A1622. [Google Scholar] [CrossRef]
- Li, Y.; Dong, B.; Zerrin, T.; Jauregui, E.; Wang, X.; Hua, X.; Ravichandran, D.; Shang, R.; Xie, J.; Ozkan, M.; et al. State-of-Health Prediction for Lithium-Ion Batteries via Electrochemical Impedance Spectroscopy and Artificial Neural Networks. J. Energy Storage 2020, 2, e186. [Google Scholar] [CrossRef]
- Luo, Y.-F. A Multi-Frequency Electrical Impedance Spectroscopy Technique of Artificial Neural Network-Based for the Static State of Charge. Energies 2021, 14, 2526. [Google Scholar] [CrossRef]
- Deshpande, S.; Datar, R.; Pramanick, B.; Bacher, G. Machine Learning-Assisted Analysis of Electrochemical Biosensors. IEEE Sens. Lett. 2023, 7, 6005904. [Google Scholar] [CrossRef]
- Han, G.; Maranzano, B.; Welch, C.; Lu, N.; Feng, Y. Deep-Learning-Guided Electrochemical Impedance Spectroscopy for Calibration-Free Pharmaceutical Moisture Content Monitoring. ACS Sens. 2024, 9, 4186–4195. [Google Scholar] [CrossRef] [PubMed]
- Balasubramani, V.; Sridhar, T.M. Machine Learning in Impedance-Based Sensors. In Machine Learning for Advanced Functional Materials; Joshi, N., Kushvaha, V., Madhushri, P., Eds.; Springer: Singapore, 2023; pp. 1–12. [Google Scholar] [CrossRef]
- Ma, X.; Bifano, L.; Fischerauer, G. Evaluation of Electrical Impedance Spectra by Long Short-Term Memory to Estimate Nitrate Concentrations in Soil. Sensors 2023, 23, 2172. [Google Scholar] [CrossRef]
- Bao, M.; Liu, D.; Wu, Y.; Wang, Z.; Yang, J.; Lan, L.; Ru, Q. Interpretable Machine Learning Prediction for Li-Ion Battery’s State of Health Based on Electrochemical Impedance Spectroscopy and Temporal Features. Electrochim. Acta 2024, 494, 144449. [Google Scholar] [CrossRef]
- Jakubski, J.; Dobosz, S.M.; Major-Gabryś, K. The Influence of Changes in Active Binder Content on the Control System of the Moulding Sand Quality. Sensors 2012, 12, 71–74. [Google Scholar] [CrossRef]
- Aybar, O.; Kara, Z.; Yücel, M.; Üstündağ, B.B. Real-Time Water Quality Monitoring via Impedance Spectroscopy and Machine Learning. In Proceedings of the 2024 12th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Novi Sad, Serbia, 15–18 July 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Tang, T.; Liu, X.; Yuan, Y.; Kiya, R.; Zhang, T.; Yang, Y.; Suetsugu, S.; Yamazaki, Y.; Ota, N.; Yamamoto, K.; et al. Machine Learning-Based Impedance System for Real-Time Recognition of Antibiotic-Susceptible Bacteria with Parallel Cytometry. Sensors 2023, 374, 132698. [Google Scholar] [CrossRef]
- Li, H.F.; Chen, M.Q.; Fu, B.A.; Liang, B. Evaluation on the Thermal and Moisture Diffusion Behavior of Sand/Bentonite. Appl. Therm. Eng. 2019, 151, 55–65. [Google Scholar] [CrossRef]
- Sabry, R.Z.; Gomes, C.; Izadi, M.; Ab Kadir, M.Z.A.; Hizam, H.; Jasni, J. Experimental Investigation on Breakdown Characteristics of Sand, Bentonite, and Their Mixes. Sensors 2018, 93, 79–84. [Google Scholar] [CrossRef]
- Campbell, J. The 10 Rules for Good Castings. In Complete Casting Handbook, 2nd ed.; Campbell, J., Ed.; Butterworth-Heinemann: Oxford, UK, 2015; pp. 535–638. [Google Scholar] [CrossRef]
- Hasted, J.B. Aqueous Dielectrics; Chapman and Hall: London, UK, 1973; pp. 238–252. [Google Scholar]
- ASTM D2216–05; Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International: West Conshohocken, PA, USA, 2005.
- O’Kelly, B.C. Oven-Drying Characteristics of Soils of Different Origins. Dry. Technol. 2005, 23, 1141–1149. [Google Scholar] [CrossRef]
- Martins, J.C.; de, M. Neto, J.C.; Passos, R.R.; Pocrifka, L.A. Electrochemical Behavior of Polyaniline: A Study by Electrochemical Impedance Spectroscopy (EIS) in Low-Frequency. Solid State Ionics 2020, 346, 115198. [Google Scholar] [CrossRef]
- Oldenburger, M.; Bedürftig, B.; Gruhle, A.; Grimsmann, F.; Richter, E.; Findeisen, R.; Hintennach, A. Investigation of the Low-Frequency Warburg Impedance of Li-Ion Cells by Frequency Domain Measurements. J. Energy Storage 2019, 21, 272–280. [Google Scholar] [CrossRef]
- Cruz-Manzo, S.; Greenwood, P. Low-Frequency Inductive Loop in EIS Measurements of an Open-Cathode Polymer Electrolyte Fuel Cell Stack: Impedance of Water Vapour Diffusion in the Cathode Catalyst Layer. J. Electroanal. Chem. 2021, 900, 115733. [Google Scholar] [CrossRef]
- Or, D.; Wraith, J.M. Temperature Effects on Soil Bulk Dielectric Permittivity Measured by Time Domain Reflectometry: A Physical Model. Water Resour. Res. 1999, 35, 371–383. [Google Scholar] [CrossRef]
- Greathouse, J.A.; Cygan, R.T.; Fredrich, J.T.; Jerauld, G.R. Molecular Dynamics Simulation of Diffusion and Electrical Conductivity in Montmorillonite Interlayers. J. Phys. Chem. C 2016, 120, 1640–1649. [Google Scholar] [CrossRef]
- Belyaeva, T.A.; Bobrov, P.P.; Kroshka, E.S.; Lapina, A.S.; Rodionova, O.V. The Effect of Very Low Water Content on the Complex Dielectric Permittivity of Clays, Sand-Clay and Sand Rocks. Meas. Sci. Technol. 2017, 28, 014005. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Wang, C. The Influence of Bound Water on Ionic Conductivity in Clay Minerals. Geochim. Cosmochim. Acta 2012, 85, 111–122. [Google Scholar] [CrossRef]
- Gavish, N.; Promislow, K. Dependence of the Dielectric Constant of Electrolyte Solutions on Ionic Concentration: A Microfield Approach. Phys. Rev. E 2016, 94, 012611. [Google Scholar] [CrossRef]
- Buchicchio, E.; De Angelis, A.; Santoni, F.; Carbone, P.; Bianconi, F.; Smeraldi, F. Battery SOC Estimation from EIS Data Based on Machine Learning and Equivalent Circuit Model. Energy 2023, 283, 128461. [Google Scholar] [CrossRef]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; p. 4. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis and Blind Source Separation. In Independent Component Analysis; Helsinki University of Technology: Espoo, Finland, 2001; pp. 20–60. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009; pp. 91–94. [Google Scholar]
- Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature Selection: A Data Perspective. ACM Comput. Surv. 2017, 50, 94. [Google Scholar] [CrossRef]
- Wong, T.-T.; Yeh, P.-Y. Reliable Accuracy Estimates from k-Fold Cross Validation. IEEE Trans. Knowl. Data Eng. 2020, 32, 1586–1594. [Google Scholar] [CrossRef]
- Liu, J.; Danait, N.; Hu, S.; Sengupta, S. A Leave-One-Feature-Out Wrapper Method for Feature Selection in Data Classification. In Proceedings of the 2013 6th International Conference on Biomedical Engineering and Informatics, Hangzhou, China, 16–18 December 2013; pp. 656–660. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Fischerauer, A.; Haacke, S.; Fischerauer, G. Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy. Sensors 2024, 24, 8111. https://doi.org/10.3390/s24248111
Ma X, Fischerauer A, Haacke S, Fischerauer G. Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy. Sensors. 2024; 24(24):8111. https://doi.org/10.3390/s24248111
Chicago/Turabian StyleMa, Xiaohu, Alice Fischerauer, Sebastian Haacke, and Gerhard Fischerauer. 2024. "Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy" Sensors 24, no. 24: 8111. https://doi.org/10.3390/s24248111
APA StyleMa, X., Fischerauer, A., Haacke, S., & Fischerauer, G. (2024). Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy. Sensors, 24(24), 8111. https://doi.org/10.3390/s24248111