Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Illustration of Impedance Measurements
3.2. Feature Extraction
3.3. Training Regression Models Using Neural Networks
Feature Set | Number of Features | R2 |
---|---|---|
Raw EIS data + + | 404 | 0.76 |
Extracted EIS + + | 12 | 0.94 |
Extracted EIS + | 11 | 0.92 |
Extracted EIS + | 11 | 0.91 |
Extracted EIS | 10 | 0.87 |
3.4. Feature Selection for Estimating Bentonite Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Declaration of Generative AI Use
Conflicts of Interest
References
- Clem, A.G.; Doehler, R.W. Industrial Applications of Bentonite. Clays Clay Miner. 1961, 10, 272–283. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Tsukimura, K.; Morimoto, K.; Suzuki, M.; Takagi, T. Comparison of methylene blue adsorption on bentonite measured using the spot and colorimetric methods. Appl. Clay Sci. 2018, 151, 140–147. [Google Scholar] [CrossRef]
- Holtzer, M.; Grabowska, B.; Bobrowski, A.; Żymankowska-Kumon, S. Methods of the montmorillonite content determination in foundry bentonites. Arch. Foundry Eng. 2009, 9, 69–72. [Google Scholar]
- Yoo, D.J.; Oh, M.; Kim, Y.S.; Park, J. Influences of Solution and Mixed Soil on Estimating Bentonite Content in Slurry Using Electrical Conductivity. Appl. Clay Sci. 2009, 43, 408–414. [Google Scholar] [CrossRef]
- Ishida, T.; Makino, T.; Wang, A. Dielectric-Relaxation Spectroscopy of Kaolinite, Montmorillonite, Allophane, and Imogolite under Moist Conditions. Clays Clay Miner. 2000, 48, 75–84. [Google Scholar] [CrossRef]
- Lin, C.; Li, W.; Li, Z.; Wang, Z.; Lu, S.; Liu, Q. Investigation of the Hydration Properties of Cement with EDTA by Alternative Current Impedance Spectroscopy. Cement Concr. Compos. 2022, 126, 104365. [Google Scholar] [CrossRef]
- Kamińska, J.; Puzio, S.; Angrecki, M.; Stachowicz, M. The Effect of the Addition of Bentonite Clay to Traditional Sand Mixtures on the Surface Quality of Iron Castings. J. Ecol. Eng. 2020, 21, 160–167. [Google Scholar] [CrossRef]
- Kanoun, O. (Ed.) Impedance Spectroscopy, 1st ed.; De Gruyter: Berlin, Germany, 2018; pp. 1–11. [Google Scholar]
- Nara, H.; Yokoshima, T.; Osaka, T. Technology of Electrochemical Impedance Spectroscopy for an Energy-Sustainable Society. Curr. Opin. Electrochem. 2020, 20, 66–77. [Google Scholar] [CrossRef]
- Bongiorno, V.; Gibbon, S.; Michailidou, E.; Curioni, M. Exploring the use of machine learning for interpreting electrochemical impedance spectroscopy data: Evaluation of the training dataset size. Corros. Sci. 2022, 198, 110–119. [Google Scholar] [CrossRef]
- Xiong, R.; Tian, J.; Shen, W.; Lu, J.; Sun, F. Semi-Supervised Estimation of Capacity Degradation for Lithium-Ion Batteries with Electrochemical Impedance Spectroscopy. J. Energy Chem. 2023, 76, 404–413. [Google Scholar] [CrossRef]
- Doonyapisut, D.; Kannan, P.; Kim, B.; Kim, J.K.; Lee, E.; Chung, C. Analysis of Electrochemical Impedance Data: Use of Deep Neural Networks. Adv. Intell. Syst. 2023, 5, 2300085. [Google Scholar] [CrossRef]
- Buteau, S.; Dahn, J. Analysis of Thousands of Electrochemical Impedance Spectra of Lithium-Ion Cells through a Machine Learning Inverse Model. J. Electrochem. Soc. 2019, 166, A1611–A1622. [Google Scholar] [CrossRef]
- Li, Y.; Dong, B.; Zerrin, T.; Jauregui, E.; Wang, X.; Hua, X.; Ravichandran, D.; Shang, R.; Xie, J.; Ozkan, M.; et al. State-of-Health Prediction for Lithium-Ion Batteries via Electrochemical Impedance Spectroscopy and Artificial Neural Networks. J. Energy Storage 2020, 2, e186. [Google Scholar] [CrossRef]
- Luo, Y.-F. A Multi-Frequency Electrical Impedance Spectroscopy Technique of Artificial Neural Network-Based for the Static State of Charge. Energies 2021, 14, 2526. [Google Scholar] [CrossRef]
- Deshpande, S.; Datar, R.; Pramanick, B.; Bacher, G. Machine Learning-Assisted Analysis of Electrochemical Biosensors. IEEE Sens. Lett. 2023, 7, 6005904. [Google Scholar] [CrossRef]
- Han, G.; Maranzano, B.; Welch, C.; Lu, N.; Feng, Y. Deep-Learning-Guided Electrochemical Impedance Spectroscopy for Calibration-Free Pharmaceutical Moisture Content Monitoring. ACS Sens. 2024, 9, 4186–4195. [Google Scholar] [CrossRef] [PubMed]
- Balasubramani, V.; Sridhar, T.M. Machine Learning in Impedance-Based Sensors. In Machine Learning for Advanced Functional Materials; Joshi, N., Kushvaha, V., Madhushri, P., Eds.; Springer: Singapore, 2023; pp. 1–12. [Google Scholar] [CrossRef]
- Ma, X.; Bifano, L.; Fischerauer, G. Evaluation of Electrical Impedance Spectra by Long Short-Term Memory to Estimate Nitrate Concentrations in Soil. Sensors 2023, 23, 2172. [Google Scholar] [CrossRef]
- Bao, M.; Liu, D.; Wu, Y.; Wang, Z.; Yang, J.; Lan, L.; Ru, Q. Interpretable Machine Learning Prediction for Li-Ion Battery’s State of Health Based on Electrochemical Impedance Spectroscopy and Temporal Features. Electrochim. Acta 2024, 494, 144449. [Google Scholar] [CrossRef]
- Jakubski, J.; Dobosz, S.M.; Major-Gabryś, K. The Influence of Changes in Active Binder Content on the Control System of the Moulding Sand Quality. Sensors 2012, 12, 71–74. [Google Scholar] [CrossRef]
- Aybar, O.; Kara, Z.; Yücel, M.; Üstündağ, B.B. Real-Time Water Quality Monitoring via Impedance Spectroscopy and Machine Learning. In Proceedings of the 2024 12th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Novi Sad, Serbia, 15–18 July 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Tang, T.; Liu, X.; Yuan, Y.; Kiya, R.; Zhang, T.; Yang, Y.; Suetsugu, S.; Yamazaki, Y.; Ota, N.; Yamamoto, K.; et al. Machine Learning-Based Impedance System for Real-Time Recognition of Antibiotic-Susceptible Bacteria with Parallel Cytometry. Sensors 2023, 374, 132698. [Google Scholar] [CrossRef]
- Li, H.F.; Chen, M.Q.; Fu, B.A.; Liang, B. Evaluation on the Thermal and Moisture Diffusion Behavior of Sand/Bentonite. Appl. Therm. Eng. 2019, 151, 55–65. [Google Scholar] [CrossRef]
- Sabry, R.Z.; Gomes, C.; Izadi, M.; Ab Kadir, M.Z.A.; Hizam, H.; Jasni, J. Experimental Investigation on Breakdown Characteristics of Sand, Bentonite, and Their Mixes. Sensors 2018, 93, 79–84. [Google Scholar] [CrossRef]
- Campbell, J. The 10 Rules for Good Castings. In Complete Casting Handbook, 2nd ed.; Campbell, J., Ed.; Butterworth-Heinemann: Oxford, UK, 2015; pp. 535–638. [Google Scholar] [CrossRef]
- Hasted, J.B. Aqueous Dielectrics; Chapman and Hall: London, UK, 1973; pp. 238–252. [Google Scholar]
- ASTM D2216–05; Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International: West Conshohocken, PA, USA, 2005.
- O’Kelly, B.C. Oven-Drying Characteristics of Soils of Different Origins. Dry. Technol. 2005, 23, 1141–1149. [Google Scholar] [CrossRef]
- Martins, J.C.; de, M. Neto, J.C.; Passos, R.R.; Pocrifka, L.A. Electrochemical Behavior of Polyaniline: A Study by Electrochemical Impedance Spectroscopy (EIS) in Low-Frequency. Solid State Ionics 2020, 346, 115198. [Google Scholar] [CrossRef]
- Oldenburger, M.; Bedürftig, B.; Gruhle, A.; Grimsmann, F.; Richter, E.; Findeisen, R.; Hintennach, A. Investigation of the Low-Frequency Warburg Impedance of Li-Ion Cells by Frequency Domain Measurements. J. Energy Storage 2019, 21, 272–280. [Google Scholar] [CrossRef]
- Cruz-Manzo, S.; Greenwood, P. Low-Frequency Inductive Loop in EIS Measurements of an Open-Cathode Polymer Electrolyte Fuel Cell Stack: Impedance of Water Vapour Diffusion in the Cathode Catalyst Layer. J. Electroanal. Chem. 2021, 900, 115733. [Google Scholar] [CrossRef]
- Or, D.; Wraith, J.M. Temperature Effects on Soil Bulk Dielectric Permittivity Measured by Time Domain Reflectometry: A Physical Model. Water Resour. Res. 1999, 35, 371–383. [Google Scholar] [CrossRef]
- Greathouse, J.A.; Cygan, R.T.; Fredrich, J.T.; Jerauld, G.R. Molecular Dynamics Simulation of Diffusion and Electrical Conductivity in Montmorillonite Interlayers. J. Phys. Chem. C 2016, 120, 1640–1649. [Google Scholar] [CrossRef]
- Belyaeva, T.A.; Bobrov, P.P.; Kroshka, E.S.; Lapina, A.S.; Rodionova, O.V. The Effect of Very Low Water Content on the Complex Dielectric Permittivity of Clays, Sand-Clay and Sand Rocks. Meas. Sci. Technol. 2017, 28, 014005. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Wang, C. The Influence of Bound Water on Ionic Conductivity in Clay Minerals. Geochim. Cosmochim. Acta 2012, 85, 111–122. [Google Scholar] [CrossRef]
- Gavish, N.; Promislow, K. Dependence of the Dielectric Constant of Electrolyte Solutions on Ionic Concentration: A Microfield Approach. Phys. Rev. E 2016, 94, 012611. [Google Scholar] [CrossRef]
- Buchicchio, E.; De Angelis, A.; Santoni, F.; Carbone, P.; Bianconi, F.; Smeraldi, F. Battery SOC Estimation from EIS Data Based on Machine Learning and Equivalent Circuit Model. Energy 2023, 283, 128461. [Google Scholar] [CrossRef]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; p. 4. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis and Blind Source Separation. In Independent Component Analysis; Helsinki University of Technology: Espoo, Finland, 2001; pp. 20–60. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009; pp. 91–94. [Google Scholar]
- Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature Selection: A Data Perspective. ACM Comput. Surv. 2017, 50, 94. [Google Scholar] [CrossRef]
- Wong, T.-T.; Yeh, P.-Y. Reliable Accuracy Estimates from k-Fold Cross Validation. IEEE Trans. Knowl. Data Eng. 2020, 32, 1586–1594. [Google Scholar] [CrossRef]
- Liu, J.; Danait, N.; Hu, S.; Sengupta, S. A Leave-One-Feature-Out Wrapper Method for Feature Selection in Data Classification. In Proceedings of the 2013 6th International Conference on Biomedical Engineering and Informatics, Hangzhou, China, 16–18 December 2013; pp. 656–660. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Fischerauer, A.; Haacke, S.; Fischerauer, G. Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy. Sensors 2024, 24, 8111. https://doi.org/10.3390/s24248111
Ma X, Fischerauer A, Haacke S, Fischerauer G. Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy. Sensors. 2024; 24(24):8111. https://doi.org/10.3390/s24248111
Chicago/Turabian StyleMa, Xiaohu, Alice Fischerauer, Sebastian Haacke, and Gerhard Fischerauer. 2024. "Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy" Sensors 24, no. 24: 8111. https://doi.org/10.3390/s24248111
APA StyleMa, X., Fischerauer, A., Haacke, S., & Fischerauer, G. (2024). Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy. Sensors, 24(24), 8111. https://doi.org/10.3390/s24248111