Digital Twin-Assisted Lightpath Provisioning and Nonlinear Mitigation in C+L+S Multiband Optical Networks †
Abstract
:1. Introduction
- The OCATA-MB methodology sketched in Section 2, which enables the application of digital twinning solutions for accurate, fast, and scalable QoT estimation and nonlinear mitigation. Such applications allow the DT to be part of the lightpath provisioning process in the SDN controller, in particular for channel assignment.
- The models and algorithmic approaches to implement the OCATA-MB methodology and the on-line MB-RSA, described in Section 3. The proposed algorithms include: (i) selection of the reference channels to be used for the DNN link modeling within the OCATA-MB; (ii) composition of the features for the non-reference channels from those of the reference ones; (iii) computation of the optimal detection areas to implement nonlinear mitigation in the Rx; and (iv) a general OCATA-assisted on-line MB-RSA algorithm for lightpath provisioning and OCATA-based channel selection.
2. Provisioning MB Optical Connections
2.1. Considered MB Scenario and Channel Performance
2.2. OCATA for MB Optical Transmission
2.3. QoT Estimation and Nonlinear Noise Mitigation
2.4. Lightpath Provisioning
3. Models and Algorithms
3.1. Selecting the Reference Channels
Algorithm 1 RCh Selection | |
INPUT: m, selCP, dmax OUTPUT: RCh | |
1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: | [X], BERsamples ← getSamples(dmax) [Y] ← FeX([X]) [σ] ← filterFeatures([Y], selCP, [σI, σQ]) for each i in 1..MAX_RCh do RCh ←Ø for each σ in [σ] do cutPoints←fitPiecewiseLinearFunction(σ, i) RCh ← RCh U {cutPoints} cRCh←findCentroids(RCh, i) BERRC← computeBER([Y], cRCh) if relativeError(BERRCh, BERsamples) < ε then return cRCh return Ø |
3.2. Feature Composition
Algorithm 2 Feature Composition | |
INPUT: ch, [Yi,RCh] OUTPUT: [Yi,ch] | |
1: 2: 3: 4: 5: 6: | lRCh, rRCh ←getAdjacentRChs(ch, [RCh]) [Yi,lRCh] ←getRChFeatures(lRCh, [Yi,RCh]) [Yi,rRCh] ←getRChFeatures(rRCh, [Yi,RCh]) [slope], [intercept] ← getLineSegments([Yi,lRCh], [Yi,rRCh]) [Yi,ch] ← getFeaturesFromSegments(ch, [slope], [intercept]) return [Yi,ch] |
3.3. Nonlinear Noise Mitigation
Algorithm 3 Compute Detection Areas | |
INPUT: Y, A, m OUTPUT: [Ai] | |
1: 2: 3: 4: 5: 6: 7: 8: 9: 10: | Ai ← Ø, for each i:1..m for each a in A do a.i ← 0 a.maxProb ← 0 for i: 1..m do if > a.maxProb then a.maxProb ← ; see Equation (4) a.i ← i Aa.i ← Aa.i ∪ a return [Ai] |
3.4. Lightpath Provisioning
Algorithm 4 OCATA-Assisted on-line MB-RSA |
INPUT: G(N, E), <src, dest, m, BERthr>, OCATA_MB |
OUTPUT: p, ch, [Ai] |
1:P ← kSP(src, dest) 2: while P ≠ Ø do 3: p ← removeFirst(P) 4: Ch ← getAvailableChannels(p) 5: ch, [Ai] ← OCATA_MB.selectCh(p, Ch, m, BERthr) (Algorithm 5) 6: if ch is not None then return <p, ch, [Ai]> 7: return None |
Algorithm 5 OCATA-MB Channel Selection |
INPUT: p, Ch, m, BERthr OUTPUT: ch, [Ai] |
1: [RCh] ← getRCh() 2: [M] ← getModelsforRoute(p, [RCh]) 3: [Yi,RCh] ← generateInputFeatures([RCh]) 4: [Yi,RChout] ←propagate([Yi,RCh], [M]) 5: Chaux ← Ch 6: BERvsCh ← getBERCurve(p) 7: while Ch ≠ Ø do 8: ch, BERmax ← getChWithMaxBER(BERvsCh, Ch) 9: if BERmax > BERth then 10: Ch ← Ch \ {ch} 11: continue 12: [Yi,chout]← featureComposition([Yi,RChout], ch) (Algorithm 2) 13: Ychout ← constReconstruction([Yi,chout]) 14: BERch ← estimateBER(Ychout) 15: if BERch ≤ BERth then return <ch, -> 16: Ch ← Ch \ {ch} 17: ch ← getChWithMinBER(BERvsCh, Chaux) 18: [Yi,chout]← featureComposition([Yi,RChout], ch) (Algorithm 2) 19: Ychout ← constReconstruction([Yi,chout]) 20: [Ai], BER ←computeNLIMitigation(Ychout, m) (Algorithm 6) 21: if BER ≤ BERth then return <ch, [Ai]> 22: return None |
Algorithm 6 Nonlinear Mitigation |
INPUT: Y, m OUTPUT: [Ai], BER |
1: A←CreateGrid() 2: [Ai] ← ComputeDetectionAreas(Y, A, m) (Algorithm 3) 3: Φout←0 4: for i = 1..m do 5: ΦA(i) ← 0 6: for each a in Ai do 7: ΦA(i) ← ΦA(i) + a.maxProb 8: ←1 − ΦA(i) 9: Φout ← Φout + /m 10: return [Ai], Φout/log2 m |
4. Simulation Results
4.1. MB Optical System Simulation and Modeling
4.2. Reference Channels Selection
4.3. Feature Composition
4.4. Nonlinear Mitigation
4.5. Lightpath Provisioning
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Da, B.; Carugi, M. Representative Use Cases and Key Network Requirements for Network 2030; Tech. rep., ITU-T FG-NET2030; International Telecommunications Union: Geneva, Switzerland, 2020. [Google Scholar]
- Velasco, L.; Cugini, F.; Casellas, R.; Nakagawa, M.; Wellbrock, G.; Chen, X. Introduction to the JOCN Special Issue on Advances in Multi-Band Optical Networks. J. Opt. Commun. Netw. 2023, 15, AIMON1–AIMON2. [Google Scholar] [CrossRef]
- Ruiz, M.; Hernandez, J.; Quagliotti, M.; Hugues-Salas, E.; Riccardi, E.; Rafel, A.; Velasco, L.; Gonzalez, O. Network Traffic Analysis under Emerging Beyond-5G Scenarios for Multi-Band Optical Technology Adoption. J. Opt. Commun. Netw. 2023, 15, F36–F47. [Google Scholar] [CrossRef]
- Mehrabi, M.; Beyranvand, H.; Emadi, J. Multi-Band Elastic Optical Networks: Inter-Channel Stimulated Raman Scattering-Aware Routing, Modulation Level and Spectrum Assignment. J. Light. Technol. 2021, 39, 3360–3370. [Google Scholar] [CrossRef]
- Ferrari, A.; Napoli, A.; Fischer, J.; Costa, N.; D’Amico, A.; Pedro, J.; Forysiak, W.; Pincemin, E.; Lord, A.; Stavdas, A.; et al. Assessment on the Achievable Throughput of Multi-Band ITU-T G.652.D Fiber Transmission Systems. J. Light. Technol. 2020, 38, 4279–4291. [Google Scholar] [CrossRef]
- Velasco, L.; Castro, A.; Ruiz, M.; Junyent, G. Solving Routing and Spectrum Allocation Related Optimization Problems: From Off-Line to In-Operation Flexgrid Network Planning. J. Light. Technol. 2014, 32, 2780–2795. [Google Scholar] [CrossRef]
- Pachnicke, S.; Paschenda, T.; Krummrich, P. Assessment of a constraint-based routing algorithm for translucent 10 Gbits/s DWDM networks considering fiber non-linearities. J. Opt. Netw. 2008, 7, 365–377. [Google Scholar] [CrossRef]
- Velasco, L.; Jirattigalachote, A.; Ruiz, M.; Monti, P.; Wosinska, L.; Junyent, G. Statistical Approach for Fast Impairment-Aware Provisioning in Dynamic All-Optical Networks. J. Opt. Commun. Netw. 2012, 4, 130–141. [Google Scholar] [CrossRef]
- Triveni, C.; Srikanth, P.; Srinivas, T. Spectrum fit allocation techniques for SLICE optical networks. Optik 2018, 165, 380–387. [Google Scholar]
- Kosmatos, E.; Casellas, R.; Nikolaou, K.; Nadal, L.; Uzunidis, D.; Matrakidis, C.; Fàbrega, J.; Moreolo, M.S.; Stavdas, A. SDN-enabled path computation element for autonomous multi-band optical transport networks. J. Opt. Commun. Netw. 2023, 15, F48–F62. [Google Scholar] [CrossRef]
- Poggiolini, P.; Bosco, G.; Carena, A.; Curri, V.; Jiang, Y.; Forghieri, F. The GN model of fiber non-linear propagation and its applications. J. Light. Technol. 2014, 32, 694–721. [Google Scholar] [CrossRef]
- Curri, V. GNPy model of the physical layer for open and disaggregated optical networking. J. Opt. Commun. Netw. 2022, 14, C92–C104. [Google Scholar] [CrossRef]
- Semrau, D.; Killey, R.; Bayvel, P. A Closed-Form Approximation of the Gaussian Noise Model in the Presence of Inter-Channel Stimulated Raman Scattering. J. Light. Technol. 2019, 37, 1924–1936. [Google Scholar] [CrossRef]
- Semrau, D.; Sillekens, E.; Killey, R.; Bayvel, P. A Modulation Format Correction Formula for the Gaussian Noise Model in the Presence of Inter-Channel Stimulated Raman Scattering. J. Light. Technol. 2019, 37, 5122–5131. [Google Scholar] [CrossRef]
- Rafique, D.; Velasco, L. Machine Learning for Optical Network Automation: Overview, Architecture and Applications. J. Opt. Commun. Netw. 2018, 10, D126–D143. [Google Scholar] [CrossRef]
- Pointurier, Y.; Pesic, J.; Rottondi, C.; Velasco, L. Introduction to the JOCN Special Issue on Machine Learning Applied to QoT Estimation in Optical Networks. J. Opt. Commun. Netw. 2021, 13, MLAQ1–MLAQ2. [Google Scholar] [CrossRef]
- Zhuge, Q.; Liu, X.; Zhang, Y.; Cai, M.; Liu, Y.; Qiu, Q.; Zhong, X.; Wu, J.; Gao, R.; Yi, L.; et al. Building a digital twin for intelligent optical networks [Invited Tutorial]. J. Opt. Commun. Netw. 2023, 15, C242–C262. [Google Scholar] [CrossRef]
- Ruiz, M.; Sequeira, D.; Velasco, L. Deep Learning-based Real-Time Analysis of Lightpath Optical Constellations [Invited]. J. Opt. Commun. Netw. 2022, 14, C70–C81. [Google Scholar] [CrossRef]
- Sequeira, D.; Ruiz, M.; Costa, N.; Napoli, A.; Pedro, J.; Velasco, L. OCATA: A deep-learning-based digital twin for the optical time domain. J. Opt. Commun. Netw. 2023, 15, 87–97. [Google Scholar] [CrossRef]
- Devigili, M.; Ruiz, M.; Costa, N.; Castro, C.; Napoli, A.; Pedro, J.; Velasco, L. Applications of the OCATA time domain digital twin: From QoT estimation to failure management. J. Opt. Commun. Netw. 2024, 16, 221–232. [Google Scholar] [CrossRef]
- Devigili, M.; Sequeira, D.; Torres-Ferrera, P.; Srivallapanondh, S.; Costa, N.; Ruiz, M.; Castro, C.; Napoli, A.; Pedro, J.; Velasco, L. Twining Digital Subcarrier Multiplexed Optical Signals with OCATA for Lightpath Provisioning. J. Light. Technol. 2024, 1–10. [Google Scholar] [CrossRef]
- Khare, P.; Costa, N.; Pedro, J.; Napoli, A.; Arpanaei, F.; Comellas, J.; Ruiz, M.; Velasco, L. SSMS: A Split Step MultiBand Simulation Software. In Proceedings of the 2023 23rd International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 2–6 July 2023. [Google Scholar]
- Sgambelluri, A.; Giorgetti, A.; Scano, D.; Cugini, F.; Paoulicci, F. OpenConfig and OpenROADM automation of operational modes in disaggregated optical networks. IEEE Access 2020, 8, 190094–190107. [Google Scholar] [CrossRef]
- Casellas, R.; Nadal, L.; Martinez, R.; Vilalta, R.; Muñoz, R.; Svaluto-Moreolo, M. Photonic device programmability in support of autonomous optical networks. J. Opt. Commun. Netw. 2024, 16, D53–D63. [Google Scholar] [CrossRef]
- Paolucci, F.; Castro, A.; Cugini, F.; Velasco, L.; Castoldi, P. Multipath Restoration and Bitrate Squeezing in SDN-based Elastic Optical Networks. Photonic Netw. Commun. 2014, 28, 45–57. [Google Scholar] [CrossRef]
- Li, M.; Yu, S.; Yang, J.; Chen, Z.; Han, Y.; Gu, W. Nonparameter Nonlinear Phase Noise Mitigation by Using M-ary SVM for Coherent Optical Systems. IEEE Photonics J. 2013, 5, 7800312. [Google Scholar] [CrossRef]
- Ghasrizadeh, S.; Khare, P.; Ruiz, M.; Velasco, L. Using the OCATA Digital Twin to Improve QoT of Optical Connections in Multiband Optical Networks. In Proceedings of the 2024 International Conference on Optical Network Design and Modeling (ONDM), Madrid, Spain, 6–9 May 2024. [Google Scholar]
- Bouguila, N.; Fao, W. Mixture Models and Applications; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Rieznik, A.; Heidt, A.; König, P.; Bettachini, V.; Grosz, D. Optimum Integration Procedures for Supercontinuum Simulation. IEEE Photonics J. 2012, 4, 552–560. [Google Scholar] [CrossRef]
- Ghasrizadeh, S.; Ruiz, M.; Velasco, L. Modified Detection Areas of Constellation Points of 16QAM Signals for Nonlinear Impairment Mitigation. CORA. Repositori de Dades de Recerca 2024, Volume 1. Available online: https://dataverse.csuc.cat/dataset.xhtml?persistentId=doi:10.34810/data1878 (accessed on 1 December 2024).
General | |
---|---|
X | Set of symbols, index x. |
Yi | Features of CP |
m | Order of modulation format and number of CPs |
selCP | Set of selected CPs to be propagated by the OCATA DNN models |
NLI noise mitigation | |
A | The whole coordinate plane, which is divided into small squares a. |
Ai | Detection area for CP i. |
k | Number of squares areas a, each of size δ × δ |
D | Square matrix of size sqrt(k) × sqrt(k) for symbol decoding. |
ϕA(i) | Probability that a symbol from CP i is received inside the detection area Ai. |
Complementary probability of ϕA(i). | |
φa(i) | Probability of a symbol from CP i is received inside the small square a ∈ Ai. |
S-Band | C-Band | L-Band | |
---|---|---|---|
Wavelength range [nm] | 1481.7–1530.1 | 1530.1–1564.8 | 1564.8–1616.7 |
Bandwidth [THz] | 6.19 | 4.35 | 5.76 |
Num of Channels (Ids) | 128 (1–128) | 87 (129–215) | 122 (216–337) |
Type of Amplifier | TDFA | EDFA | EDFA |
Amplifier Noise Figure | 5 | ||
Nonlinear coefficient Dispersion, Attenuation | Vary with frequency [5] | ||
Launch Power | 0 dBm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghasrizadeh, S.; Khare, P.; Costa, N.; Ruiz, M.; Napoli, A.; Pedro, J.; Velasco, L. Digital Twin-Assisted Lightpath Provisioning and Nonlinear Mitigation in C+L+S Multiband Optical Networks. Sensors 2024, 24, 8054. https://doi.org/10.3390/s24248054
Ghasrizadeh S, Khare P, Costa N, Ruiz M, Napoli A, Pedro J, Velasco L. Digital Twin-Assisted Lightpath Provisioning and Nonlinear Mitigation in C+L+S Multiband Optical Networks. Sensors. 2024; 24(24):8054. https://doi.org/10.3390/s24248054
Chicago/Turabian StyleGhasrizadeh, Sadegh, Prasunika Khare, Nelson Costa, Marc Ruiz, Antonio Napoli, Joao Pedro, and Luis Velasco. 2024. "Digital Twin-Assisted Lightpath Provisioning and Nonlinear Mitigation in C+L+S Multiband Optical Networks" Sensors 24, no. 24: 8054. https://doi.org/10.3390/s24248054
APA StyleGhasrizadeh, S., Khare, P., Costa, N., Ruiz, M., Napoli, A., Pedro, J., & Velasco, L. (2024). Digital Twin-Assisted Lightpath Provisioning and Nonlinear Mitigation in C+L+S Multiband Optical Networks. Sensors, 24(24), 8054. https://doi.org/10.3390/s24248054