A Rapidly Tunable Laser System for Measurements of NH2 at 597 nm Behind Reflected Shock Waves
Abstract
1. Introduction
2. Background
2.1. Quasi-Phase-Matched Second-Harmonic Generation
2.2. Laser Absorption Spectroscopy
2.3. NH2 Spectroscopy
3. System Architecture
4. Fixed-Wavelength Characterization
5. Rapid-Tuning Characterization
6. Demonstration
6.1. Representative Raw Data
6.2. Time History Measurements
6.3. Lineshape Measurements
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldenstein, C.S.; Spearrin, R.; Jeffries, J.B.; Hanson, R.K. Infrared laser-absorption sensing for combustion gases. Prog. Energy Combust. Sci. 2017, 60, 132–176. [Google Scholar] [CrossRef]
- Mathews, G.C.; Blaisdell, M.G.; Lemcherfi, A.I.; Slabaugh, C.D.; Goldenstein, C.S. High-bandwidth absorption-spectroscopy measurements of temperature, pressure, CO, and H2O in the annulus of a rotating detonation rocket engine. Appl. Phys. B 2021, 127, 165. [Google Scholar] [CrossRef]
- Grégoire, C.M.; Mathieu, O.; Petersen, E.L. High-temperature line strengths with He- and Ar-broadening coefficients of the P(20) line in the 1 ← 0 band of carbon monoxide. Appl. Phys. B 2023, 129, 187. [Google Scholar] [CrossRef]
- Finch, P.M.; Girard, J.J.; Schwartz, T.; Strand, C.L.; Hanson, R.K.; Yu, W.M.; Austin, J.M.; Hornung, H.G.; Gross, T.; Schwartzentruber, T.E. Shock-layer measurements in T5 shock tunnel hypersonic flows around a cylinder model. AIAA J. 2024, 62, 1–24. [Google Scholar] [CrossRef]
- Anderson, R.; Brown, J.; Trageser, E.; Gao, Q.; Barik, S.; Wintrebert-Fouquet, M.; Fernandes, A.; Chen, P.; Zadrozny, B.; Bee Olmedo, P.; et al. Single-frequency DFB laser diodes at visible wavelengths grown with low temperature remote plasma chemical vapor deposition p-AlGaN. In Proceedings of the SPIE, Gallium Nitride Materials and Devices XVIII, San Francisco, CA, USA, 15 March 2023; Morkoç, H., Fujioka, H., Schwarz, U.T., Eds.; SPIE: Paris, France, 2023; Volume 12421, p. 54. [Google Scholar] [CrossRef]
- Kohse-Höinghaus, K.; Davidson, D.F.; Chang, A.Y.; Hanson, R.K. Quantitative NH2 concentration determination in shock tube laser-absorption experiments. J. Quant. Spectrosc. Radiat. Transf. 1989, 42, 1–17. [Google Scholar] [CrossRef]
- Lu, X.; Chang, L.; Tran, M.A.; Komljenovic, T.; Bowers, J.E.; Srinivasan, K. Emerging integrated laser technologies in the visible and short near-infrared regimes. Nat. Photonics 2024, 18, 1010–1023. [Google Scholar] [CrossRef]
- Rea, E.C.; Hanson, R.K. Rapid extended range tuning of single-mode ring dye lasers. Appl. Opt. 1983, 22, 518–520. [Google Scholar] [CrossRef]
- Jundt, D.H.; Magel, G.A.; Fejer, M.M.; Byer, R.L. Periodically poled LiNbO3 for high-efficiency second-harmonic generation. Appl. Phys. Lett. 1991, 59, 2657–2659. [Google Scholar] [CrossRef]
- Fejer, M.M.; Magel, G.A.; Jundt, D.H.; Byer, R.L. Quasi-phase-matched second harmonic generation: Tuning and tolerances. IEEE J. Quantum Electron. 1992, 28, 2631–2654. [Google Scholar] [CrossRef]
- Miller, G.D.; Batchko, R.G.; Tulloch, W.M.; Weise, D.R.; Fejer, M.M.; Byer, R.L. 42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate. Opt. Lett. 1997, 22, 1834. [Google Scholar] [CrossRef]
- Jechow, A.; Schedel, M.; Stry, S.; Sacher, J.; Menzel, R. Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm. Opt. Lett. 2007, 32, 3035. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.B.; Lee, W.K.; Park, C.Y.; Yu, D.H.; Park, S.E. Narrow linewidth 578 nm light generation using frequency-doubling with a waveguide PPLN pumped by an optical injection-locked diode laser. Opt. Express 2010, 18, 10308–10314. [Google Scholar] [CrossRef] [PubMed]
- Koglbauer, A.; Würtz, P.; Gericke, T.; Ott, H. A laser system for the excitation of rubidium Rydberg states using second harmonic generation in a PPLN waveguide crystal. Appl. Phys. B 2011, 104, 577–581. [Google Scholar] [CrossRef]
- Hamilton, M.L.; Peverall, R.; Ritchie, G.A.D.; Thornton, L.J.; van Helden, J.H. Wavelength modulation and cavity enhanced absorption spectroscopy using ∼1.9 μm radiation produced by difference frequency generation with a MgO doped PPLN crystal. Appl. Phys. B 2009, 97, 715–722. [Google Scholar] [CrossRef]
- Fedorova, K.A.; Sokolovskii, G.S.; Battle, P.R.; Livshits, D.A.; Rafailov, E.U. 574–647 nm wavelength tuning by second-harmonic generation from diode-pumped PPKTP waveguides. Opt. Lett. 2015, 40, 835. [Google Scholar] [CrossRef]
- Yang, C.; Huang, Z.; Deng, H.; Zhao, Q.; Zhang, Y.; Gan, J.; Cheng, H.; Feng, Z.; Peng, M.; Yang, Z.; et al. Ultra-compact all-fiber narrow-linewidth single-frequency blue laser at 489 nm. J. Opt. 2018, 20, 025803. [Google Scholar] [CrossRef]
- Ding, J.; Yu, G.; You, D.; Qian, Y.; Fang, C.; Li, B.; Zhou, J.; Zhu, X.; Wei, W. Compact and high reliable frequency-stabilized laser system at 589 nm based on the distributed-feedback laser diodes. Appl. Phys. B 2021, 127, 130. [Google Scholar] [CrossRef]
- Wu, Y.; Wei, J.; Zeng, C.; Xia, J. Efficient sum-frequency generation of a yellow laser in a thin-film lithium niobate waveguide. Opt. Lett. 2024, 49, 2833–2836. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: Amsterdam, The Netherland; Boston, MA, USA, 2008. [Google Scholar]
- Yu, N.E.; Ro, J.H.; Cha, M.; Kurimura, S.; Taira, T. Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band. Opt. Lett. 2002, 27, 1046–1048. [Google Scholar] [CrossRef]
- Hum, D.S.; Fejer, M.M. Quasi-phasematching. Comptes Rendus Phys. 2007, 8, 180–198. [Google Scholar] [CrossRef]
- Parameswaran, K.R.; Kurz, J.R.; Roussev, R.V.; Fejer, M.M. Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide. Opt. Lett. 2002, 27, 43–45. [Google Scholar] [CrossRef] [PubMed]
- Hanson, R.K.; Spearrin, R.M.; Goldenstein, C.S. Spectroscopy and Optical Diagnostics for Gases; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Wei, W.; Peng, W.Y.; Wang, Y.; Shao, J.; Strand, C.L.; Hanson, R.K. Two-color frequency-multiplexed IMS technique for gas thermometry at elevated pressures. Appl. Phys. B 2020, 126, 51. [Google Scholar] [CrossRef]
- Clees, S.; Cha, D.H.; Biswas, P.; Boddapati, V.; Cassady, S.J.; Strand, C.L.; Hanson, R.K.; French, B.; Gilmour, A.; Hawk, K.C.; et al. A laser-absorption sensor for in situ detection of biofuel blend vapor in engine intakes. Proc. Combust. Inst. 2023, 39, 1307–1316. [Google Scholar] [CrossRef]
- Li, H.; Rieker, G.B.; Liu, X.; Jeffries, J.B.; Hanson, R.K. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 2006, 45, 1052. [Google Scholar] [CrossRef]
- Demtröder, W. Laser Spectroscopy; Volume 1: Basic Principles; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2012, 24, 012004. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W.I.F.; Bowen, P.J. Ammonia for power. Prog. Energy Combust. Sci. 2018, 69, 63–102. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Amer-Hatem, F.; Azad, A.K.; Dedoussi, I.C.; de Joannon, M.; Fernandes, R.X.; Glarborg, P.; Hashemi, H.; He, X.; Mashruk, S.; et al. Review on ammonia as a potential fuel: From synthesis to economics. Energy Fuels 2021, 35, 6964–7029. [Google Scholar] [CrossRef]
- Green, R.M.; Miller, J.A. The measurement of relative concentration profiles of NH2 using laser absorption spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 1981, 26, 313–327. [Google Scholar] [CrossRef]
- Davidson, D.F.; Kohse-Höinghaus, K.; Chang, A.Y.; Hanson, R.K. A pyrolysis mechanism for ammonia. Int. J. Chem. Kinet. 1990, 22, 513–535. [Google Scholar] [CrossRef]
- Mertens, J.D.; Kohse-Höinghaus, K.; Hanson, R.K.; Bowman, C.T. A shock tube study of H + HNCO → NH2 + CO. Int. J. Chem. Kinet. 1991, 23, 655–668. [Google Scholar] [CrossRef]
- Votsmeier, M.; Song, S.; Davidson, D.F.; Hanson, R.K. Shock tube study of monomethylamine thermal decomposition and NH2 high temperature absorption coefficient. Int. J. Chem. Kinet. 1999, 31, 323–330. [Google Scholar] [CrossRef]
- Dressler, K.; Ramsay, D.A. The electronic absorption spectra of NH2 and ND2. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1959, 251, 553–602. [Google Scholar] [CrossRef]
- Peng, W.Y.; Strand, C.L.; Hanson, R.K. Analysis of laser absorption gas sensors employing scanned-wavelength modulation spectroscopy with 1f-phase detection. Appl. Phys. B 2020, 126, 17. [Google Scholar] [CrossRef]
- Rault, T.M.; Clees, S.; Figueroa-Labastida, M.; Barnes, S.C.; Ferris, A.M.; Obrecht, N.; Callu, C.; Hanson, R.K. Multi-speciation and ignition delay time measurements of ammonia oxidation behind reflected shock waves. Combust. Flame 2024, 260, 113260. [Google Scholar] [CrossRef]
- Sur, R.; Spearrin, R.M.; Peng, W.Y.; Strand, C.L.; Jeffries, J.B.; Enns, G.M.; Hanson, R.K. Line intensities and temperature-dependent line broadening coefficients of Q-branch transitions in the ν2 band of ammonia near 10.4 μm. J. Quant. Spectrosc. Radiat. Transf. 2016, 175, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Clees, S.; Rault, T.M.; Zaczek, L.T.; Hanson, R.K. Simultaneous OH and OH* measurements during NH3 oxidation in a shock tube. Proc. Combust. Inst. 2024, 40, 105286. [Google Scholar] [CrossRef]
- Coleman, H.W.; Steele, W.G. Experimentation, Validation, and Uncertainty Analysis for Engineers, 3rd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Alturaifi, S.A.; Mathieu, O.; Petersen, E.L. An experimental and modeling study of ammonia pyrolysis. Combust. Flame 2022, 235, 111694. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clees, S.; Barnes, S.C.; Rault, T.M.; Strand, C.L.; Hanson, R.K. A Rapidly Tunable Laser System for Measurements of NH2 at 597 nm Behind Reflected Shock Waves. Sensors 2024, 24, 7920. https://doi.org/10.3390/s24247920
Clees S, Barnes SC, Rault TM, Strand CL, Hanson RK. A Rapidly Tunable Laser System for Measurements of NH2 at 597 nm Behind Reflected Shock Waves. Sensors. 2024; 24(24):7920. https://doi.org/10.3390/s24247920
Chicago/Turabian StyleClees, Sean, Spencer C. Barnes, Taylor M. Rault, Christopher L. Strand, and Ronald K. Hanson. 2024. "A Rapidly Tunable Laser System for Measurements of NH2 at 597 nm Behind Reflected Shock Waves" Sensors 24, no. 24: 7920. https://doi.org/10.3390/s24247920
APA StyleClees, S., Barnes, S. C., Rault, T. M., Strand, C. L., & Hanson, R. K. (2024). A Rapidly Tunable Laser System for Measurements of NH2 at 597 nm Behind Reflected Shock Waves. Sensors, 24(24), 7920. https://doi.org/10.3390/s24247920