Error Enhancement for Upper Limb Rehabilitation in the Chronic Phase after Stroke: A 5-Day Pre-Post Intervention Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.2.1. Apparatus
2.2.2. Treatment Session Protocol
2.2.3. Games—Force Field Algorithm
2.3. Outcome Measures
2.3.1. Clinical Measurements
2.3.2. Patient-Reported Measurements
2.3.3. Kinematic Measurements of Sensorimotor Function
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Clinical Outcomes
3.3. Patient-Reported Outcomes
3.4. Kinematic Outcomes
3.5. Number of Reaching Movements during 5 h of Error Enhancement Training
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Subject (N = 20) | FMA UE PRE | FMA UE POST | VAS Tone PRE | VAS Tone POST | VAS Pain PRE | VAS Pain POST | ARAT PRE | ARAT POST | MAS Tone PRE | MAS Tone POST | MAS EU PRE | MAS EU POST |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 51 | 55 | 25 | 3 | 0 | 0 | 38 | 40 | 5 | 5 | 16 | 17 |
2 | 37 | 40 | 70 | 15 | 0 | 0 | 21 | 22 | 5 | 5 | 5 | 5 |
3 | 58 | 58 | 0 | 1 | 0 | 1 | 52 | 56 | 4 | 4 | 18 | 18 |
4 | 60 | 61 | 30 | 0 | 15 | 0 | 57 | 57 | 4 | 4 | 18 | 18 |
5 | 50 | 50 | 20 | 13 | 24 | 19 | 48 | 48 | 4 | 4 | 12 | 12 |
6 | 49 | 52 | 12 | 2 | 0 | 0 | 43 | 45 | 5 | 5 | 11 | 11 |
7 | 53 | 54 | 4 | 1 | 0 | 1 | 50 | 52 | 4 | 4 | 12 | 12 |
8 | 50 | 51 | 11 | 5 | 1 | 0 | 53 | 55 | 4 | 4 | 17 | 17 |
9 | 63 | 64 | 4 | 0 | 0 | 0 | 55 | 55 | 4 | 4 | 18 | 18 |
10 | 54 | 55 | 37 | 33 | 5 | 0 | 52 | 54 | 5 | 5 | 14 | 14 |
11 | 56 | 56 | 25 | 6 | 9 | 6 | 49 | 51 | 4 | 4 | 14 | 14 |
12 | 58 | 58 | 39 | 46 | 0 | 2 | 51 | 50 | 4 | 4 | 14 | 14 |
13 | 57 | 63 | 3 | 19 | 2 | 4 | 55 | 55 | 4 | 4 | 14 | 14 |
14 | 57 | 62 | 3 | 32 | 0 | 0 | 53 | 55 | 4 | 4 | 14 | 14 |
15 | 40 | 50 | 11 | 6 | 0 | 0 | 19 | 26 | 4 | 4 | 9 | 10 |
16 | 60 | 60 | 12 | 1 | 0 | 1 | 54 | 56 | 4 | 4 | 13 | 13 |
17 | 54 | 55 | 59 | 34 | 0 | 0 | 35 | 37 | 4 | 4 | 12 | 11 |
18 | 46 | 49 | 11 | 6 | 0 | 0 | 22 | 28 | 6 | 6 | 5 | 6 |
19 | 54 | 56 | 30 | 39 | 36 | 35 | 48 | 50 | 4 | 4 | 14 | 14 |
20 | 54 | 55 | 19 | 24 | 3 | 0 | 44 | 46 | 4 | 4 | 14 | 14 |
Median (IQ1–IQ3) | 54.0 (50.0–57.8) | 55.0 (51.3–59.5) | 15.5 (5.8–30.0) | 6.0 (1.3–30.0) | 0.0 (0.0–4.5) | 0.0 (0.0–1.8) | 49.5 (39.3–53.0) | 50.5 (41.3–55.0) | 4.0 (4.0–4.8) | 4.0 (4.0–4.8) | 14.0 (12.0–15.5) | 14.0 (11.3–16.3) |
Median difference (IQ1–IQ3) | 1.0 (0.8–3.0) | −5 (−13.0–0.2) | 0 (−1.5–0.3) | 2.0 (0.75–2.0) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | ||||||
p-Value | <0.001 * | 0.089 | 0.178 | <0.001 * | 1.000 | 0.317 |
Appendix B
Subject (N = 20) | MAL AOU PRE | MAL AOU POST | MAL QOM PRE | MAL QOM POST | SIS-Hand PRE | SIS-Hand POST |
---|---|---|---|---|---|---|
1 | 2.2 | 2.2 | 2.5 | 2.6 | 65 | 65 |
2 | 0.4 | 0.5 | 0.2 | 0.3 | 10 | 10 |
3 | 2.4 | 2.5 | 2.1 | 2.6 | 90 | 90 |
4 | 3.8 | 3.8 | 3.6 | 3.6 | 80 | 80 |
5 | 1.5 | 1.5 | 1.7 | 1.8 | 70 | 45 |
6 | 3.1 | 3.4 | 3.2 | 3.6 | 100 | 100 |
7 | 1.5 | 1.7 | 1.2 | 1.3 | 40 | 35 |
8 | 3.4 | 3.5 | 3.6 | 3.6 | 75 | 90 |
9 | 2.2 | 2.3 | 2.2 | 2.2 | 95 | 75 |
10 | 1.5 | 2.1 | 1.6 | 2.0 | 50 | 65 |
11 | 1.5 | 1.5 | 1.6 | 1.7 | 50 | 35 |
12 | 2.3 | 2.8 | 2.5 | 3.1 | 45 | 65 |
13 | 4.7 | 4.7 | 3.6 | 3.8 | 75 | 75 |
14 | 1.8 | 2.1 | 2.3 | 3.0 | 70 | 70 |
15 | 1.3 | 1.6 | 0.8 | 1.4 | 10 | 25 |
16 | 2.5 | 2.5 | 1.9 | 1.9 | 70 | 70 |
17 | 2.0 | 2.2 | 1.8 | 2.0 | 30 | 40 |
18 | 0.9 | 1.2 | 0.9 | 1.1 | 10 | 15 |
19 | 0.8 | 0.8 | 0.9 | 1.0 | 25 | 25 |
20 | 1.5 | 1.9 | 1.6 | 2.2 | 45 | 45 |
Median (IQ1–IQ3) | 1.9 (1.5–2.5) | 2.1 (1.6–2.7) | 1.9 (1.3–2.5) | 2.1 (1.5–3.1) | 57.5 (32.5–75.0) | 65.0 (35.0–75.0) |
Median difference (IQ1–IQ3) | 0.1 (0.0–0.3) | 0.1 (0.1–0.5) | 0.0 (0.0–6.3) | |||
p-Value | <0.001 * | <0.001 * | 0.837 |
Appendix C
Subject (N = 20) | Absolute Error X PRE | Absolute Error X POST | Absolute Error Y PRE | Absolute Error Y POST | Absolute Error XY PRE | Absolute Error XY POST | Variability X PRE | Variability X POST | Variability Y PRE | Variability Y POST | Variability XY PRE | Variability XY POST |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.0377 | 0.0389 | 0.0268 | 0.0241 | 0.0500 | 0.0500 | 0.0197 | 0.0370 | 0.0069 | 0.0107 | 0.0209 | 0.0385 |
2 | 0.0835 | 0.0812 | 0.0304 | 0.0329 | 0.0920 | 0.0915 | 0.0498 | 0.0532 | 0.0162 | 0.0212 | 0.0523 | 0.0573 |
3 | 0.0459 | 0.0297 | 0.0327 | 0.0196 | 0.0657 | 0.0383 | 0.0651 | 0.0287 | 0.0345 | 0.0180 | 0.0737 | 0.0339 |
4 | 0.0460 | 0.0239 | 0.0447 | 0.0467 | 0.0676 | 0.0553 | 0.0455 | 0.0180 | 0.0179 | 0.0113 | 0.0489 | 0.0212 |
5 | 0.0756 | 0.0551 | 0.0220 | 0.0239 | 0.0820 | 0.0642 | 0.0386 | 0.0422 | 0.0157 | 0.0125 | 0.0417 | 0.0440 |
6 | 0.1366 | 0.1004 | 0.0431 | 0.0489 | 0.1484 | 0.1201 | 0.0516 | 0.0424 | 0.0289 | 0.0305 | 0.0591 | 0.0522 |
7 | 0.0281 | 0.0356 | 0.0341 | 0.0076 | 0.0476 | 0.0384 | 0.0216 | 0.0288 | 0.0116 | 0.0097 | 0.0245 | 0.0304 |
8 | 0.0368 | 0.0325 | 0.0383 | 0.0185 | 0.0575 | 0.0395 | 0.0238 | 0.0232 | 0.0090 | 0.0154 | 0.0254 | 0.0279 |
9 | 0.0366 | 0.0347 | 0.0123 | 0.0314 | 0.0404 | 0.0504 | 0.0244 | 0.0213 | 0.0123 | 0.0100 | 0.0274 | 0.0235 |
10 | 0.0327 | 0.0402 | 0.0281 | 0.0201 | 0.0460 | 0.0472 | 0.0339 | 0.0216 | 0.0170 | 0.0144 | 0.0380 | 0.0260 |
11 | 0.0521 | 0.0473 | 0.0335 | 0.0322 | 0.0681 | 0.0626 | 0.0565 | 0.0433 | 0.0155 | 0.0152 | 0.0586 | 0.0459 |
12 | 0.0556 | 0.0264 | 0.0242 | 0.0174 | 0.0629 | 0.0371 | 0.0261 | 0.0313 | 0.0159 | 0.0163 | 0.0306 | 0.0353 |
13 | 0.0685 | 0.0827 | 0.0231 | 0.0465 | 0.0764 | 0.1004 | 0.0440 | 0.0341 | 0.0195 | 0.0175 | 0.0481 | 0.0383 |
14 | 0.0423 | 0.0383 | 0.0269 | 0.0174 | 0.0541 | 0.0448 | 0.0307 | 0.0350 | 0.0289 | 0.0154 | 0.0422 | 0.0382 |
15 | 0.0424 | 0.0197 | 0.0096 | 0.0091 | 0.0440 | 0.0242 | 0.0273 | 0.0241 | 0.0091 | 0.0077 | 0.0288 | 0.0253 |
16 | 0.0496 | 0.0457 | 0.0346 | 0.0264 | 0.0637 | 0.0587 | 0.0281 | 0.0408 | 0.0129 | 0.0195 | 0.0309 | 0.0452 |
17 | 0.0484 | 0.0387 | 0.0271 | 0.0454 | 0.0610 | 0.0642 | 0.0468 | 0.0383 | 0.0115 | 0.0236 | 0.0482 | 0.0450 |
18 | 0.0675 | 0.1397 | 0.0683 | 0.0939 | 0.1064 | 0.1811 | 0.0770 | 0.0372 | 0.0453 | 0.0343 | 0.0894 | 0.0506 |
19 | 0.0471 | 0.0408 | 0.0294 | 0.0222 | 0.0601 | 0.0505 | 0.0320 | 0.0339 | 0.0133 | 0.0105 | 0.0347 | 0.0355 |
20 | 0.0541 | 0.0313 | 0.0402 | 0.0296 | 0.0736 | 0.0454 | 0.0369 | 0.0290 | 0.0132 | 0.0163 | 0.0392 | 0.0332 |
Mean (SD) Median (IQ1–IQ3) | 0.0478 (0.0388–0.0645) | 0.0388 (0.0316–0.0532) | 0.0299 (0.0248–0.0373) | 0.0252 (0.0188–0.0423) | 0.0633 (0.0510–0.0757) | 0.0505 (0.0408–0.0642) | 0.0390 (0.0154) | 0.0332 (0.0090) | 0.0156 (0.0118–0.019) | 0.0154 (0.0109–0.0191) | 0.0431 (0.0174) | 0.0374 (0.0101) |
Mean difference (SD) Median difference (IQ1–IQ3) | −0.0045 (−0.0209-(−0.0012)) | −0.0020 (−0.0085–0.0033) | −0.0093 (−0.0185–0.0003) | −0.0058 (0.0150) | −0.0016 (−0.0029–0.0033) | −0.0057 (0.0151) | ||||||
p-Value | 0.048 * | 0.502 | 0.052 | 0.099 | 0.526 | 0.105 |
Subject (N = 20) | Contraction/Expansion Ratio X PRE | Contraction/Expansion Ratio X POST | Contraction/Expansion Ratio Y PRE | Contraction/Expansion Ratio Y POST | Contraction/Expansion Ratio XY PRE | Contraction/Expansion Ratio XY POST |
---|---|---|---|---|---|---|
1 | 0.7204 | 1.0126 | 0.8319 | 1.0233 | 0.6021 | 1.0360 |
2 | 1.0941 | 0.9933 | 1.0323 | 1.0477 | 1.1505 | 1.0895 |
3 | 0.8429 | 1.0558 | 1.0068 | 1.0978 | 0.8482 | 1.1546 |
4 | 0.8808 | 0.8257 | 0.9435 | 1.0134 | 0.8433 | 0.8451 |
5 | 0.5741 | 0.7549 | 1.0450 | 1.0143 | 0.5867 | 0.7605 |
6 | 0.2559 | 0.3474 | 0.6964 | 0.5759 | 0.1423 | 0.1857 |
7 | 0.7438 | 0.8204 | 0.8831 | 1.0060 | 0.6611 | 0.8267 |
8 | 0.8200 | 0.9514 | 1.0013 | 1.0101 | 0.8415 | 0.9706 |
9 | 1.0891 | 0.7931 | 0.9524 | 0.9307 | 1.0359 | 0.7393 |
10 | 0.9859 | 0.9999 | 0.9591 | 1.0187 | 0.9472 | 1.0183 |
11 | 1.2249 | 1.1716 | 1.3003 | 1.1425 | 1.5890 | 1.3422 |
12 | 0.7061 | 0.8122 | 0.8291 | 0.8624 | 0.5961 | 0.7000 |
13 | 0.7373 | 0.8589 | 0.8241 | 0.8770 | 0.5851 | 0.7424 |
14 | 1.3785 | 1.1218 | 1.0784 | 1.0466 | 1.4875 | 1.1739 |
15 | 1.3583 | 1.0051 | 1.0124 | 0.9313 | 1.3762 | 0.9374 |
16 | 1.4639 | 1.2971 | 1.0235 | 1.0918 | 1.5235 | 1.3892 |
17 | 0.6125 | 0.8600 | 0.7450 | 0.8647 | 0.4563 | 0.7441 |
18 | 0.8074 | 0.3642 | 0.8978 | 0.5702 | 0.7366 | 0.2436 |
19 | 1.3585 | 1.3082 | 1.0731 | 1.2200 | 1.4899 | 1.5984 |
20 | 1.0934 | 0.7664 | 1.3613 | 1.2877 | 1.4898 | 1.0064 |
Mean (SD) Median (IQ1–IQ3) | 0.9374 (0.3167) | 0.9060 (0.2494) | 0.9802 (0.8447–1.0418) | 1.0139 (0.8904–1.0807) | 0.9494 (0.4235) | 0.9252 (0.3418) |
Mean difference (SD) Median difference (IQ1–IQ3) | −0.0314 (0.2165) | 0.0243 (−0.0423–0.0752) | −0.0242 (0.2734) | |||
p-Value | 0.524 | 0.526 | 0.696 |
Subject (N = 20) | Shift X PRE | Shift X POST | Shift Y PRE | Shift Y POST | Shift XY PRE | Shift XY POST | Task Score PRE | Task Score POST |
---|---|---|---|---|---|---|---|---|
1 | −0.0331 | −0.0248 | 0.0268 | 0.0241 | 0.0426 | 0.0346 | 1.1385 | 0.8192 |
2 | 0.0815 | 0.0797 | −0.0270 | −0.0297 | 0.0859 | 0.0850 | 1.8198 | 1.9570 |
3 | 0.0344 | 0.0245 | −0.0137 | 0.0090 | 0.0370 | 0.0261 | 1.9613 | 0.7130 |
4 | −0.0143 | 0.0150 | −0.0447 | −0.0467 | 0.0469 | 0.0491 | 1.3489 | 0.9889 |
5 | −0.0690 | −0.0333 | −0.0176 | −0.0239 | 0.0712 | 0.0409 | 2.1012 | 1.4088 |
6 | −0.0863 | −0.0902 | −0.0385 | −0.0283 | 0.0945 | 0.0946 | 3.7352 | 3.8181 |
7 | −0.0023 | 0.0266 | 0.0336 | 0.0014 | 0.0337 | 0.0267 | 1.2360 | 0.2199 |
8 | −0.0297 | −0.0113 | −0.0383 | −0.0153 | 0.0484 | 0.0190 | 1.0392 | 0.1975 |
9 | −0.0332 | 0.0293 | −0.0077 | −0.0314 | 0.0341 | 0.0429 | 0.1626 | 0.5666 |
10 | 0.0192 | −0.0370 | −0.0275 | −0.0171 | 0.0335 | 0.0407 | 0.9018 | 0.3702 |
11 | −0.0178 | −0.0162 | −0.0239 | −0.0321 | 0.0298 | 0.0359 | 2.3120 | 1.5337 |
12 | 0.0431 | −0.0015 | −0.0172 | −0.0071 | 0.0464 | 0.0072 | 1.1661 | 0.4249 |
13 | −0.0609 | −0.0827 | −0.0113 | −0.0452 | 0.0619 | 0.0943 | 1.6026 | 2.0325 |
14 | 0.0190 | −0.0273 | −0.0119 | −0.0125 | 0.0224 | 0.0300 | 1.9281 | 0.5807 |
15 | −0.0159 | 0.0000 | −0.0052 | −0.0008 | 0.0167 | 0.0008 | 0.9417 | 0.0372 |
16 | 0.0251 | −0.0152 | −0.0336 | −0.0182 | 0.0419 | 0.0237 | 1.8134 | 1.4485 |
17 | 0.0172 | 0.0293 | −0.0166 | −0.0453 | 0.0239 | 0.0540 | 1.7436 | 1.8628 |
18 | 0.0294 | 0.0873 | −0.0600 | −0.0939 | 0.0668 | 0.1282 | 3.8772 | 5.2449 |
19 | 0.0172 | 0.0199 | −0.0252 | −0.0071 | 0.0305 | 0.0211 | 1.7633 | 1.8254 |
20 | 0.0536 | 0.0102 | −0.0266 | −0.0031 | 0.0598 | 0.0106 | 2.4762 | 1.6822 |
Mean (SD) Median (IQ1–IQ3) | −0.0011 (0.0430) | −0.0009 (0.0442) | −0.0193 (0.0216) | −0.0212 (0.0253) | 0.0423 (0.0313–0.0614 | 0.0353 (0.0218–0.0527) | 1.7534 (1.1454–2.0662) | 1.1989 (0.4603–1.8534) |
Mean difference (SD) Median difference (IQ1–IQ3) | 0.0003 (0.0344) | −0.0018 (0.0196) | −0.004 (−0.016–0.007) | −0.4483 (−0.8059–0.0920) | ||||
p-Value | 0.973 | 0.678 | 0.391 | 0.030 |
Subject (N = 20) | Posture Speed PRE | Posture Speed POST | Reaction Time PRE | Reaction Time POST | Initial Direction Angle PRE | Initial Direction Angle POST | Initial Distance Ratio PRE | Initial Distance Ratio POST | Initial Speed Ratio PRE | Initial Speed Ratio POST |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.0017 | 0.0029 | 0.3270 | 0.3000 | 0.0299 | 0.0323 | 0.9212 | 0.9368 | 0.9212 | 0.9368 |
2 | 0.0097 | 0.0090 | 0.4450 | 0.5030 | 0.2230 | 0.3155 | 0.4050 | 0.1731 | 0.4050 | 0.1731 |
3 | 0.0013 | 0.0025 | 0.3830 | 0.4140 | 0.0253 | 0.0289 | 0.9806 | 0.9742 | 0.9806 | 0.9742 |
4 | 0.0014 | 0.0052 | 0.3545 | 0.3560 | 0.0268 | 0.0373 | 0.9573 | 1.0000 | 0.9573 | 1.0000 |
5 | 0.0017 | 0.0031 | 0.2745 | 0.2575 | 0.1186 | 0.0493 | 0.2574 | 0.3900 | 0.2574 | 0.3900 |
6 | 0.0081 | 0.0090 | 0.3020 | 0.3085 | 0.0775 | 0.0619 | 0.5681 | 0.6158 | 0.5681 | 0.6158 |
7 | 0.0016 | 0.0022 | 0.3530 | 0.3170 | 0.0325 | 0.0589 | 0.9678 | 0.5734 | 0.9678 | 0.5734 |
8 | 0.0077 | 0.0063 | 0.3375 | 0.2935 | 0.0579 | 0.0871 | 0.8376 | 0.7948 | 0.8376 | 0.7948 |
9 | 0.0030 | 0.0053 | 0.2925 | 0.3225 | 0.0415 | 0.0531 | 0.9684 | 1.0000 | 0.9684 | 1.0000 |
10 | 0.0006 | 0.0013 | 0.2535 | 0.2690 | 0.0318 | 0.0343 | 0.9757 | 0.9415 | 0.9757 | 0.9415 |
11 | 0.0026 | 0.0030 | 0.2690 | 0.2960 | 0.0372 | 0.0613 | 0.7775 | 0.7111 | 0.7775 | 0.7111 |
12 | 0.0050 | 0.0092 | 0.3420 | 0.3830 | 0.0587 | 0.0618 | 0.8335 | 0.8380 | 0.8335 | 0.8380 |
13 | 0.0062 | 0.0078 | 0.3150 | 0.3085 | 0.1116 | 0.0601 | 0.5672 | 0.7453 | 0.5672 | 0.7453 |
14 | 0.0028 | 0.0048 | 0.3340 | 0.3460 | 0.0443 | 0.0358 | 0.8215 | 0.9268 | 0.8215 | 0.9268 |
15 | 0.0012 | 0.0013 | 0.3160 | 0.3025 | 0.0293 | 0.0200 | 0.9253 | 0.9552 | 0.9253 | 0.9552 |
16 | 0.0074 | 0.0125 | 0.4170 | 0.3935 | 0.0708 | 0.0580 | 0.8029 | 0.7427 | 0.8029 | 0.7427 |
17 | 0.0027 | 0.0041 | 0.3020 | 0.3265 | 0.0345 | 0.0421 | 0.8868 | 0.8798 | 0.8868 | 0.8798 |
18 | 0.0199 | 0.0243 | 0.3750 | 0.3980 | 0.1326 | 0.2147 | 0.4281 | 0.4629 | 0.4281 | 0.4629 |
19 | 0.0022 | 0.0027 | 0.3435 | 0.3365 | 0.0448 | 0.0351 | 0.8059 | 0.9068 | 0.8059 | 0.9068 |
20 | 0.0071 | 0.0082 | 0.3355 | 0.3945 | 0.0979 | 0.0720 | 0.6813 | 0.7159 | 0.6813 | 0.7159 |
Mean (SD) Median (IQ1–IQ3) | 0.0047 (0.0046) | 0.0062 (0.0053) | 0.3347 (0.3020–0.3541) | 0.3245 (0.3006–0.3909) | 0.0663 (0.0496) | 0.0710 (0.0703) | 0.7685 (0.2149) | 0.7642 (0.2253) | 0.9726 (0.0416) | 0.9577 (0.0800) |
Mean difference (SD) Median difference (IQ1–IQ3) | 0.0015 (0.0017) | 0.0093 (−0.0144–0.0278) | 0.0046 (0.0371) | −0.0042 (0.1255) | −0.0149 (0.0739) | |||||
p-Value | <0.001 * | 0.287 | 0.582 | 0.881 | 0.378 |
Subject (N = 20) | Speed Maxima Count PRE | Speed Maxima Count POST | Min Max Speed Difference PRE | Min Max Speed Difference POST | Movement Time PRE | Movement Time POST | Path Length Ratio PRE | Path Length Ratio POST | Max Speed PRE | Max Speed POST | Task Score PRE | Task Score POST |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2.000 | 1.925 | 0.0101 | 0.0134 | 1.2270 | 1.1105 | 1.096 | 1.125 | 0.1811 | 0.2283 | 1.514 | 1.235 |
2 | 6.105 | 7.774 | 0.0429 | 0.0352 | 1.7300 | 2.1950 | 1.453 | 1.484 | 0.1880 | 0.1381 | 9.881 | 8.379 |
3 | 1.925 | 2.158 | 0.0053 | 0.0052 | 1.2560 | 1.0785 | 1.038 | 1.056 | 0.1689 | 0.1945 | 1.464 | 3.597 |
4 | 1.800 | 1.550 | 0.0130 | 0.0083 | 1.2305 | 1.0620 | 1.100 | 1.111 | 0.1902 | 0.2200 | 1.349 | 1.392 |
5 | 6.575 | 3.632 | 0.0184 | 0.0155 | 2.9420 | 1.8600 | 1.072 | 1.070 | 0.0773 | 0.1089 | 7.381 | 5.300 |
6 | 2.750 | 2.325 | 0.0274 | 0.0326 | 1.1820 | 1.0175 | 1.161 | 1.125 | 0.1659 | 0.1830 | 4.253 | 3.941 |
7 | 1.718 | 3.600 | 0.0070 | 0.0059 | 1.2770 | 1.8865 | 1.075 | 1.030 | 0.1716 | 0.1084 | 1.603 | 4.643 |
8 | 2.400 | 2.350 | 0.0224 | 0.0332 | 0.8915 | 0.8235 | 1.147 | 1.203 | 0.2717 | 0.3591 | 2.952 | 3.530 |
9 | 1.800 | 1.600 | 0.0151 | 0.0151 | 0.8985 | 0.7645 | 1.110 | 1.157 | 0.2720 | 0.3157 | 0.931 | 1.615 |
10 | 2.079 | 2.459 | 0.0092 | 0.0148 | 1.1215 | 1.1550 | 1.105 | 1.121 | 0.2617 | 0.2627 | 0.353 | 1.018 |
11 | 2.795 | 2.763 | 0.0107 | 0.0132 | 1.4020 | 1.4710 | 1.055 | 1.113 | 0.1516 | 0.1512 | 3.150 | 3.811 |
12 | 2.333 | 2.175 | 0.0196 | 0.0154 | 1.2910 | 1.0665 | 1.144 | 1.137 | 0.1962 | 0.2055 | 3.043 | 3.122 |
13 | 3.513 | 2.325 | 0.0306 | 0.0164 | 1.4840 | 1.0580 | 1.250 | 1.119 | 0.1647 | 0.2130 | 4.944 | 3.468 |
14 | 2.615 | 1.625 | 0.0258 | 0.0217 | 1.1010 | 0.9520 | 1.260 | 1.130 | 0.2527 | 0.2435 | 2.768 | 1.712 |
15 | 2.475 | 2.675 | 0.0081 | 0.0085 | 1.1995 | 1.1435 | 1.124 | 1.092 | 0.2307 | 0.2572 | 1.271 | 0.862 |
16 | 2.025 | 2.450 | 0.0206 | 0.0214 | 1.1225 | 1.1940 | 1.117 | 1.187 | 0.1896 | 0.1995 | 3.160 | 3.549 |
17 | 1.975 | 2.500 | 0.0226 | 0.0163 | 0.7610 | 1.1865 | 1.150 | 1.160 | 0.3264 | 0.2290 | 1.493 | 2.090 |
18 | 4.486 | 4.974 | 0.0684 | 0.0553 | 1.5140 | 1.4440 | 2.040 | 1.805 | 0.3079 | 0.2284 | 5.658 | 6.349 |
19 | 2.868 | 1.950 | 0.0220 | 0.0183 | 1.5475 | 1.2265 | 1.187 | 1.142 | 0.1961 | 0.2024 | 3.329 | 2.077 |
20 | 2.650 | 2.325 | 0.0369 | 0.0282 | 1.2270 | 1.0515 | 1.221 | 1.221 | 0.1988 | 0.2099 | 4.054 | 3.753 |
Mean (SD) Median (IQ1–IQ3) | 2.8444 (1.3652) | 2.7568 (1.4265) | 0.0201 (0.0102–0.0270) | 0.0159 (0.0132–0.0266) | 1.3203 (0.4465) | 1.2373 (0.3654) | 1.1952 (0.2196) | 1.1795 (0.1735) | 0.1932 (0.1696–0.2595) | 0.2115 (0.1859–0.2398) | 2.9976 (1.4716–4.2034) | 3.4989 (1.6396–3.9087) |
Mean difference (SD) Median difference (IQ1–IQ3) | −0.0876 (1.0112) | −0.0020 (−0.0051–0.0012) | −0.0829 (0.3503) | −0.0158 (0.0751) | 0.0105 (−0.0026–0.0302) | 0.0612 (−0.5706–0.6623) | ||||||
p-Value | 0.703 | 0.156 | 0.303 | 0.359 | 0.279 | 0.823 |
Subject (N = 20) | Factor Score PRE | Factor Score POST |
---|---|---|
1 | 0.8283 | 2.0276 |
2 | −1.3118 | −0.8961 |
3 | −2.4012 | −1.9303 |
4 | −1.1338 | 0.0833 |
5 | 0.4366 | −0.4202 |
6 | −0.4081 | −1.8099 |
7 | 0.2928 | 0.2025 |
8 | 1.7253 | 1.4921 |
9 | 1.5730 | 0.7617 |
10 | 0.6207 | 0.5885 |
11 | 0.5727 | 0.0727 |
12 | −0.0909 | −1.0242 |
13 | −1.8085 | −2.2526 |
14 | 0.3617 | 0.3512 |
15 | 1.4490 | −0.3761 |
16 | −0.2766 | −1.2977 |
17 | −1.2074 | −1.6821 |
18 | −2.8977 | −1.1667 |
19 | −0.2268 | 0.0503 |
20 | −0.7357 | 1.1153 |
Mean (SD) | −0.2319 (1.2778) | −0.3055 (1.1908) |
Mean difference (SD) | 0.0736 (1.0011) | |
p-Value | 0.746 |
References
- Duncan, P.W.; Goldstein, L.B.; Horner, R.D.; Landsman, P.B.; Samsa, G.P.; Matchar, D.B. Similar Motor Recovery of Upper and Lower Extremities after Stroke. Stroke 1994, 25, 1181–1188. [Google Scholar] [CrossRef]
- Hebert, D.; Lindsay, M.P.; McIntyre, A.; Kirton, A.; Rumney, P.G.; Bagg, S.; Bayley, M.; Dowlatshahi, D.; Dukelow, S.; Garnhum, M.; et al. Canadian Stroke Best Practice Recommendations: Stroke Rehabilitation Practice Guidelines, Update 2015. Int. J. Stroke 2016, 11, 459–484. [Google Scholar] [CrossRef]
- Levin, M.F.; Kleim, J.A.; Wolf, S.L. What Do Motor “Recovery” and “Compensation” Mean in Patients Following Stroke? Neurorehabil. Neural Repair 2009, 23, 313–319. [Google Scholar] [CrossRef]
- Bernhardt, J.; Hayward, K.S.; Kwakkel, G.; Ward, N.S.; Wolf, S.L.; Borschmann, K.; Krakauer, J.W.; Boyd, L.A.; Carmichael, S.T.; Corbett, D.; et al. Agreed Definitions and a Shared Vision for New Standards in Stroke Recovery Research: The Stroke Recovery and Rehabilitation Roundtable Taskforce. Int. J. Stroke 2017, 12, 444–450. [Google Scholar] [CrossRef]
- Kwakkel, G.; Kollen, B.; Lindeman, E. Understanding the Pattern of Functional Recovery after Stroke: Facts and Theories. Restor. Neurol. Neurosci. 2004, 22, 281–299. [Google Scholar]
- Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke Rehabilitation. Lancet 2011, 377, 1693–1702. [Google Scholar] [CrossRef]
- Page, S.J.; Gater, D.R.; Bach-Y-Rita, P. Reconsidering the Motor Recovery Plateau in Stroke Rehabilitation. Arch. Phys. Med. Rehabil. 2004, 85, 1377–1381. [Google Scholar] [CrossRef]
- Demain, S.; Wiles, R.; Roberts, L.; McPherson, K. Recovery Plateau Following Stroke: Fact or Fiction? Disabil. Rehabil. 2006, 28, 815–821. [Google Scholar] [CrossRef]
- Ward, N.S.; Brander, F.; Kelly, K. Intensive Upper Limb Neurorehabilitation in Chronic Stroke: Outcomes from the Queen Square Programme. J. Neurol. Neurosurg. Psychiatry 2019, 90, 498–506. [Google Scholar] [CrossRef]
- Ballester, B.R.; Ward, N.S.; Brander, F.; Maier, M.; Kelly, K.; Verschure, P.F.M.J. Relationship between Intensity and Recovery in Post-Stroke Rehabilitation: A Retrospective Analysis. J. Neurol. Neurosurg. Psychiatry 2022, 93, 226–228. [Google Scholar] [CrossRef]
- Pollock, A.; Farmer, S.E.; Brady, M.C.; Langhorne, P.; Mead, G.E.; Mehrholz, J.; van Wijck, F. Interventions for Improving Upper Limb Function after Stroke. Cochrane Database Syst. Rev. 2014, 2014, CD010820. [Google Scholar] [CrossRef]
- Everard, G.; Declerck, L.; Detrembleur, C.; Leonard, S.; Bower, G.; Dehem, S.; Lejeune, T. New Technologies Promoting Active Upper Limb Rehabilitation after Stroke: An Overview and Network Meta-Analysis. Eur. J. Phys. Rehabil. Med. 2022, 58, 530. [Google Scholar] [CrossRef]
- Mehrholz, J.; Pohl, M.; Platz, T.; Kugler, J.; Elsner, B. Electromechanical and Robot-Assisted Arm Training for Improving Activities of Daily Living, Arm Function, and Arm Muscle Strength after Stroke. Cochrane Database Syst. Rev. 2018, 9, CD006876. [Google Scholar] [CrossRef]
- Duret, C.; Grosmaire, A.G.; Krebs, H.I. Robot-Assisted Therapy in Upper Extremity Hemiparesis: Overview of an Evidence-Based Approach. Front. Neurol. 2019, 10, 412. [Google Scholar] [CrossRef]
- Cooke, E.V.; Mares, K.; Clark, A.; Tallis, R.C.; Pomeroy, V.M. The Effects of Increased Dose of Exercise-Based Therapies to Enhance Motor Recovery after Stroke: A Systematic Review and Meta-Analysis. BMC Med. 2010, 8, 60. [Google Scholar] [CrossRef]
- Hsieh, Y.W.; Wu, C.Y.; Liao, W.W.; Lin, K.C.; Wu, K.Y.; Lee, C.Y. Effects of Treatment Intensity in Upper Limb Robot-Assisted Therapy for Chronic Stroke: A Pilot Randomized Controlled Trial. Neurorehabil. Neural Repair 2011, 25, 503–511. [Google Scholar] [CrossRef]
- Chang, W.H.; Kim, Y.-H. Robot-Assisted Therapy in Stroke Rehabilitation. J. Stroke 2013, 15, 174–181. [Google Scholar] [CrossRef]
- Fasoli, S.E.; Krebs, H.I.; Stein, J.; Frontera, W.R.; Hogan, N. Effects of Robotic Therapy on Motor Impairment and Recovery in Chronic Stroke. Arch. Phys. Med. Rehabil. 2003, 84, 477–482. [Google Scholar] [CrossRef]
- Boyd, L.A.; Vidoni, E.D.; Wessel, B.D. Motor Learning after Stroke: Is Skill Acquisition a Prerequisite for Contralesional Neuroplastic Change? Neurosci. Lett. 2010, 482, 21–25. [Google Scholar] [CrossRef]
- Wilkins, K.B.; Owen, M.; Ingo, C.; Carmona, C.; Dewald, J.P.A.; Yao, J. Neural Plasticity in Moderate to Severe Chronic Stroke Following a Device-Assisted Task-Specific Arm/Hand Intervention. Front. Neurol. 2017, 8, 284. [Google Scholar] [CrossRef]
- Kwakkel, G.; Van Wegen, E.; Burridge, J.; Winstein, C.; van Dokkum, L.; Alt Murphy, M.; Levin, M.; Krakauer, J. Standardized Measurement of Quality of Upper Limb Movement after Stroke: Consensus-Based Core Recommendations from the Second Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke 2019, 14, 783–791. [Google Scholar] [CrossRef]
- Israely, S.; Leisman, G.; Carmeli, E. Improvement in Hand Trajectory of Reaching Movements by Error-Augmentation. Adv. Exp. Med. Biol. 2018, 1070, 71–84. [Google Scholar] [CrossRef]
- Kleim, J.A.; Jones, T.A. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage. J. Speech Lang. Hear. Res. 2008, 51, S225–S239. [Google Scholar] [CrossRef]
- Patton, J.L.; Huang, F.C. Sensory-Motor Interactions and Error Augmentation. In Neurorehabilitation Technology, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 79–95. [Google Scholar] [CrossRef]
- Patton, J.L.; Mussa-Ivaldi, F.A. Robot-Assisted Adaptive Training: Custom Force Fields for Teaching Movement Patterns. IEEE Trans. Biomed. Eng. 2004, 51, 636–646. [Google Scholar] [CrossRef]
- Izawa, J.; Criscimagna-Hemminger, S.E.; Shadmehr, R. Cerebellar Contributions to Reach Adaptation and Learning Sensory Consequences of Action. J. Neurosci. 2012, 32, 4230–4239. [Google Scholar] [CrossRef]
- Masters, R.; Maxwell, J. Implicit Motor Learning, Reinvestment and Movement Disruption: What You Don’t Know Won’t Hurt You. In Skill Acquisition in Sport; Routledge: London, UK, 2004; pp. 231–252. [Google Scholar] [CrossRef]
- Williams, C.K.; Tremblay, L.; Carnahan, H. It Pays to Go Off-Track: Practicing with Error-Augmenting Haptic Feedback Facilitates Learning of a Curve-Tracing Task. Front. Psychol. 2016, 7, 2010. [Google Scholar] [CrossRef]
- Parker, V.M.; Wade, D.T.; Hewer, R.L. Loss of Arm Function after Stroke: Measurement, Frequency, and Recovery. Int. Rehabil. Med. 1986, 8, 69–73. [Google Scholar] [CrossRef]
- Cirstea, M.C.; Levin, M.F. Compensatory Strategies for Reaching in Stroke. Brain 2000, 123 Pt 5, 940–953. [Google Scholar] [CrossRef]
- Israely, S.; Carmeli, E. Error Augmentation as a Possible Technique for Improving Upper Extremity Motor Performance after a Stroke—A Systematic Review. Top. Stroke Rehabil. 2016, 23, 116–125. [Google Scholar] [CrossRef]
- Abdollahi, F.; Case Lazarro, E.D.; Listenberger, M.; Kenyon, R.V.; Kovic, M.; Bogey, R.A.; Hedeker, D.; Jovanovic, B.D.; Patton, J.L. Error Augmentation Enhancing Arm Recovery in Individuals with Chronic Stroke: A Randomized Crossover Design. Neurorehabil. Neural Repair 2014, 28, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, F.; Corrigan, M.; Lazzaro, E.D.C.; Kenyon, R.V.; Patton, J.L. Error-Augmented Bimanual Therapy for Stroke Survivors. NeuroRehabilitation 2018, 43, 51–61. [Google Scholar] [CrossRef]
- Tropea, P.; Cesqui, B.; Monaco, V.; Aliboni, S.; Posteraro, F.; Micera, S. Effects of the Alternate Combination of “Error-Enhancing” and “Active Assistive” Robot-Mediated Treatments on Stroke Patients. IEEE J. Transl. Eng. Health Med. 2013, 1, 2100109. [Google Scholar] [CrossRef]
- Givon-Mayo, R.; Simons, E.; Reuth, A.O.; Karpin, H.; Israely, S.; Carmeli, E. A Preliminary Investigation of Error Enhancement of the Velocity Component in Stroke Patients’ Reaching Movements. Int. J. Ther. Rehabil. 2014, 21, 160–168. [Google Scholar] [CrossRef]
- Stewart, J.C.; Cramer, S.C. Patient-Reported Measures Provide Unique Insights into Motor Function after Stroke. Stroke 2013, 44, 1111–1116. [Google Scholar] [CrossRef]
- Liu, L.Y.; Li, Y.; Lamontagne, A. The Effects of Error-Augmentation versus Error-Reduction Paradigms in Robotic Therapy to Enhance Upper Extremity Performance and Recovery Post-Stroke: A Systematic Review. J. Neuroeng. Rehabil. 2018, 15, 1–25. [Google Scholar] [CrossRef]
- Fugl Meyer, A.R.; Jaasko, L.; Leyman, I. The Post Stroke Hemiplegic Patient. I. A Method for Evaluation of Physical Performance. Scand J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar] [CrossRef]
- Brott, T.; Adams, H.P.; Olinger, C.P.; Marle, J.R.; Barsan, W.G.; Biller, J.; Spilker, J.; Holleran, R.; Eberle, R.; Hertzberg, V.; et al. Measurements of Acute Cerebral Infarction: A Clinical Examination Scale. Stroke 1989, 20, 864–870. [Google Scholar] [CrossRef]
- Vanbellingen, T.; Kersten, B.; Van De Winckel, A.; Bellion, M.; Baronti, F.; Müri, R.; Bohlhalter, S. A New Bedside Test of Gestures in Stroke: The Apraxia Screen of TULIA (AST). J. Neurol. Neurosurg. Psychiatry 2011, 82, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.; Cockburn, J.; Halligan, P. Development of a Behavioral Test of Visuospatial Neglect. Arch. Phys. Med. Rehabil. 1987, 68, 98–102. [Google Scholar] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”: A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Carmeli, E.; Israely, S.; Barel, H.; Zalesov, O.; Zaygraykin, N.; Mansour, R.; Leisman, G. Robotically Driven Error Augmentation Training Enhances Post-Stroke Arm Motor Recovery. Eng. Rep. 2023, e12720, online version of record. [Google Scholar] [CrossRef]
- Kim, H.; Her, J.; Ko, J.; Park, D.S.; Woo, J.H.; You, Y.; Choi, Y. Reliability, Concurrent Validity, and Responsiveness of the Fugl-Meyer Assessment (FMA) for Hemiplegic Patients. J. Phys. Ther. Sci. 2012, 24, 893–899. [Google Scholar] [CrossRef]
- Page, S.J.; Fulk, G.D.; Boyne, P. Clinically Important Differences for the Upper-Extremity Fugl-Meyer Scale in People with Minimal to Moderate Impairment Due to Chronic Stroke. Phys. Ther. 2012, 92, 791–798. [Google Scholar] [CrossRef]
- Lin, J.-H.; Hsu, M.-J.; Sheu, C.-F.; Wu, T.-S.; Lin, R.-T.; Chen, C.-H.; Hsieh, C.-L. Psychometric Comparisons of 4 Measures for Assessing Upper-Extremity Function in People with Stroke. Phys. Ther. 2009, 89, 840–850. [Google Scholar] [CrossRef]
- Kwakkel, G.; Lannin, N.A.; Borschmann, K.; English, C.; Ali, M.; Churilov, L.; Saposnik, G.; Winstein, C.; van Wegen, E.E.H.; Wolf, S.L.; et al. Standardized Measurement of Sensorimotor Recovery in Stroke Trials: Consensus-Based Core Recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke 2017, 12, 451–461. [Google Scholar] [CrossRef]
- Williamson, A.; Hoggart, B. Pain: A Review of Three Commonly Used Pain Rating Scales. J. Clin. Nurs. 2005, 14, 798–804. [Google Scholar] [CrossRef]
- Klimek, L.; Bergmann, K.C.; Biedermann, T.; Bousquet, J.; Hellings, P.; Jung, K.; Merk, H.; Olze, H.; Schlenter, W.; Stock, P.; et al. Visual Analogue Scales (VAS)—Measuring Instruments for the Documentation of Symptoms and Therapy Monitoring in Case of Allergic Rhinitis in Everyday Health Care. Allergo J. 2017, 26, 36–47. [Google Scholar] [CrossRef]
- Poole, J.L.; Whitney, S.L. Motor Assessment Scale for Stroke Patients: Concurrent Validity and Interrater Reliability. Arch. Phys. Med. Rehabil. 1988, 69, 195–197. [Google Scholar]
- Carr, J.H.; Shepherd, R.B.; Nordholm, L.; Lynne, D. Investigation of a New Motor Assessment Scale for Stroke Patients. Phys. Ther. 1985, 65, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Van der Lee, J.H.; De Groot, V.; Beckerman, H.; Wagenaar, R.C.; Lankhorst, G.J.; Bouter, L.M. The Intra- and Interrater Reliability of the Action Research Arm Test: A Practical Test of Upper Extremity Function in Patients with Stroke. Arch. Phys. Med. Rehabil. 2001, 82, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Lannin, N.A. Reliability, Validity and Factor Structure of the Upper Limb Subscale of the Motor Assessment Scale (UL-MAS) in Adults Following Stroke. Disabil. Rehabil. 2004, 26, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Vellone, E.; Savini, S.; Fida, R.; Dickson, V.V.; Melkus, G.D.E.; Carod-Artal, F.J.; Rocco, G.; Alvaro, R. Psychometric Evaluation of the Stroke Impact Scale 3.0. J. Cardiovasc. Nurs. 2015, 30, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Uswatte, G.; Taub, E.; Morris, D.; Vignolo, M.; McCulloch, K. Reliability and Validity of the Upper-Extremity Motor Activity Log-14 for Measuring Real-World Arm Use. Stroke 2005, 36, 2493–2496. [Google Scholar] [CrossRef] [PubMed]
- Coderre, A.M.; Zeid, A.A.; Dukelow, S.P.; Demmer, M.J.; Moore, K.D.; Demers, M.J.; Bretzke, H.; Herter, T.M.; Glasgow, J.I.; Norman, K.E.; et al. Assessment of Upper-Limb Sensorimotor Function of Subacute Stroke Patients Using Visually Guided Reaching. Neurorehabil. Neural Repair 2010, 24, 528–541. [Google Scholar] [CrossRef] [PubMed]
- BKIN Technologies Ltd. Kinarm Standard Tests; BKIN Technologies Ltd.: Kingston, ON, Canada, 2018. [Google Scholar]
- Dukelow, S.P.; Herter, T.M.; Moore, K.D.; Demers, M.J.; Glasgow, J.I.; Bagg, S.D.; Norman, K.E.; Scott, S.H. Quantitative Assessment of Limb Position Sense Following Stroke. Neurorehabil. Neural Repair 2010, 24, 178–187. [Google Scholar] [CrossRef]
- Otaka, E.; Otaka, Y.; Kasuga, S.; Nishimoto, A.; Yamazaki, K.; Kawakami, M.; Ushiba, J.; Liu, M. Clinical Usefulness and Validity of Robotic Measures of Reaching Movement in Hemiparetic Stroke Patients. J. Neuroeng. Rehabil. 2015, 12, 1–10. [Google Scholar] [CrossRef]
- Saenen, L.; de Xivry, J.-J.O.; Verheyden, G. Development and Validation of a Novel Robot-Based Assessment of Upper Limb Sensory Processing in Chronic Stroke. Brain Sci. 2022, 12, 1005. [Google Scholar] [CrossRef]
- Lohse, K.R.; Lang, C.E.; Boyd, L.A. Is More Better? Using Metadata to Explore Dose-Response Relationships in Stroke Rehabilitation. Stroke 2014, 45, 2053–2058. [Google Scholar] [CrossRef]
- Scrivener, K.; Sherrington, C.; Schurr, K.; Treacy, D. Many Participants in Inpatient Rehabilitation Can Quantify Their Exercise Dosage Accurately: An Observational Study. J. Physiother. 2011, 57, 117–122. [Google Scholar] [CrossRef]
- Meyer, S.; Verheyden, G.; Kempeneers, K.; Michielsen, M. Arm-Hand Boost Therapy During Inpatient Stroke Rehabilitation: A Pilot Randomized Controlled Trial. Front. Neurol. 2021, 12, 652042. [Google Scholar] [CrossRef]
- Budhota, A.; Chua, K.S.G.; Hussain, A.; Kager, S.; Cherpin, A.; Contu, S.; Vishwanath, D.; Kuah, C.W.K.; Ng, C.Y.; Yam, L.H.L.; et al. Robotic Assisted Upper Limb Training Post Stroke: A Randomized Control Trial Using Combinatory Approach Toward Reducing Workforce Demands. Front. Neurol. 2021, 12, 622014. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, H.; Bosomworth, H.; Krebs, H.I.; van Wijck, F.; Howel, D.; Wilson, N.; Aird, L.; Alvarado, N.; Andole, S.; Cohen, D.L.; et al. Robot Assisted Training for the Upper Limb after Stroke (RATULS): A Multicentre Randomised Controlled Trial. Lancet 2019, 394, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Pohl, J.; Held, J.P.O.; Verheyden, G.; Alt Murphy, M.; Engelter, S.; Flöel, A.; Keller, T.; Kwakkel, G.; Nef, T.; Ward, N.; et al. Consensus-Based Core Set of Outcome Measures for Clinical Motor Rehabilitation After Stroke—A Delphi Study. Front. Neurol. 2020, 11, 875. [Google Scholar] [CrossRef]
- Miller, K.J.; Slade, A.L.; Pallant, J.F.; Galea, M.P. Evaluation of the Psychometric Properties of the Upper Limb Subscales of the Motor Assessment Scale Using a Rasch Analysis Model. J. Rehabil. Med. 2010, 42, 315–322. [Google Scholar] [CrossRef]
- Sabari, J.S.; Ai, L.L.; Velozo, C.A.; Lehman, L.; Kieran, O.; Lai, J.S. Assessing Arm and Hand Function after Stroke: A Validity Test of the Hierarchical Scoring System Used in the Motor Assessment Scale for Stroke. Arch. Phys. Med. Rehabil. 2005, 86, 1609–1615. [Google Scholar] [CrossRef]
- Wei, Y.; Bajaj, P.; Scheidt, R.A.; Patton, J.L. Visual Error Augmentation for Enhancing Motor Learning and Rehabilitative Relearning. In Proceedings of the 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 28 June–1 July 2005; pp. 505–510. [Google Scholar]
- Huang, F.C.; Patton, J.L.; Mussa-Ivaldi, F.A. Manual Skill Generalization Enhanced by Negative Viscosity. J. Neurophysiol. 2010, 104, 2008. [Google Scholar] [CrossRef]
- Zeiler, S.R.; Krakauer, J.W. The Interaction between Training and Plasticity in the Poststroke Brain. Curr. Opin. Neurol. 2013, 26, 609–616. [Google Scholar] [CrossRef]
- Meeus, P.; Dalcq, V.; Beauport, D.; Declercq, K.; Swine, B. Medical Practice Variations—Thrombectomy Stroke (Material). 2009. Available online: https://www.healthybelgium.be/images/INAMI/Rapports/RAPPORT-EN-Thrombectomie_AVC_materiel_2022.pdf (accessed on 7 October 2023).
- Bagg, S.; Pombo, A.P.; Hopman, W. Effect of Age on Functional Outcomes after Stroke Rehabilitation. Stroke 2002, 33, 179–185. [Google Scholar] [CrossRef]
- Mutai, H.; Furukawa, T.; Araki, K.; Misawa, K.; Hanihara, T. Factors Associated with Functional Recovery and Home Discharge in Stroke Patients Admitted to a Convalescent Rehabilitation Ward. Geriatr. Gerontol. Int. 2012, 12, 215–222. [Google Scholar] [CrossRef] [PubMed]
Subject (N = 22) | Age | Days since Stroke Onset | Gender (M/F) | Work Status | Stroke Ethology | Most Affected Arm | Hand Dominance | Dominant Hand = Most Affected Side |
---|---|---|---|---|---|---|---|---|
1 | 57 | 297 | M | Full time | Ischemia | Right | Right | Yes |
2 | 64 | 2003 | M | Retirement | Ischemia | Right | Right | Yes |
3 | 65 | 1166 | F | Retirement | Ischemia | Right | Right | Yes |
4 | 69 | 621 | M | Retirement | Ischemia | Left | Right | No |
5 | 70 | 845 | M | Retirement | Ischemia | Right | Right | Yes |
6 | 33 | 1662 | M | Fulltime | Ischemia | Right | Left | No |
7 | 49 | 11,751 | M | Fulltime | Bleeding | Left | Right | No |
8 | 59 | 1201 | F | Invalidity | Ischemia | Left | Right | No |
9 | 57 | 196 | F | Parttime | Ischemia | Left | Right | No |
10 | 71 | 2869 | M | Retirement | Ischemia | Right | Right | Yes |
11 | 54 | 1113 | F | Fulltime | Ischemia | Left | Right | No |
12 | 71 | 2201 | F | Retirement | Bleeding | Right | Right | Yes |
13 | 57 | 680 | F | Invalidity | Bleeding | Left | Right | No |
14 | 56 | 979 | F | Invalidity | Bleeding | Right | Right | Yes |
15 | 65 | 184 | M | Retirement | Bleeding | Right | Right | Yes |
16 | 44 | 306 | M | Invalidity | Ischemia | Right | Left | No |
17 | 66 | 1580 | F | Retirement | Ischemia | Left | Right | No |
18 | 60 | 1219 | M | Fulltime | Ischemia | Left | Right | No |
19 | 28 | 907 | F | Invalidity | Bleeding | Left | Right | No |
20 | 45 | 571 | F | Parttime | Ischemia | Left | Right | No |
21 | 56 | 910 | M | Invalidity | Ischemia & bleeding | Right | Right | Yes |
22 | 51 | 1307 | M | Invalidity | Bleeding | Right | Right | Yes |
Mean (SD) | 57 (12) | 1571 (2372) | M: 55% | Working: 32% | Ischemia: 66% | Right: 55% | Right: 91% | Dominant side affected: 45% |
Range | 28–71 | 184–11,751 | F: 45% | Not Working: 68% | Bleeding: 34% | Left: 45% | Left: 9% | Non-dominant side affected: 55% |
Outcome Parameter | Median (IQ1–IQ3) | Median Difference (IQ1–IQ3) | p-Value | Effect Size (r) | |
---|---|---|---|---|---|
PRE | POST | ||||
Fugle-Meyer Assessment—UE a | 54.0 (50.0–57.8) | 55.0 (51.3–59.5) | 1.0 (0.8–3.0) | <0.001 * | 0.5 |
Visual Analogue Scale—tone a | 15.5 (5.8–30.0) | 6.0 (1.3–30.0) | −5.0 (−13.0–0.2) | 0.089 | 0.3 |
Visual Analogue Scale—pain a | 0.0 (0.0–4.5) | 0 (0.0–1.8) | 0.0 (−1.5–0.3) | 0.178 | 0.2 |
Action Research Arm Test a | 49.5 (39.3–53.0) | 50.5 (41.3–55.0) | 2.0 (0.8–2.0) | <0.001 * | 0.6 |
Motor Assessment Scale—tone a | 4.0 (4.0–4.8) | 4.0 (4.0–4.8) | 0.0 (0.0–0.0) | 1.000 | 0.0 |
Motor Assessment Scale—UE a | 14.0 (12.0–15.5) | 14.0 (11.3–16.3) | 0.0 (0.0–0.0) | 0.317 | 0.2 |
Outcome Parameter | Median (IQ1–IQ3) | Median Difference (IQ1–IQ3) | p-Value | Effect Size (r) | |
---|---|---|---|---|---|
PRE | POST | ||||
Motor activity log—AOU a | 1.9 (1.5–2.5) | 2.1 (1.6–2.7) | 0.1 (0.0–0.3) | <0.001 * | 0.5 |
Motor activity log—QOM a | 1.9 (1.3–2.5) | 2.1 (1.5–3.1) | 0.1 (0.1–0.5) | <0.001 * | 0.5 |
Stroke Impact Scale—Hand a | 57.5 (32.5–75.0) | 65.0 (35.0–75.0) | 0.0 (0.0–6.3) | 0.837 | 0.0 |
Kinematic Test | Outcome Parameter | Mean (SD) Median (IQ1–IQ3) | Mean Difference (SD) Median Difference (IQ1–IQ3) | p-Value | Effect Size (r/G) | |
---|---|---|---|---|---|---|
PRE | POST | |||||
Arm Position Matching | Absolute Error X b | 0.048 (0.039–0.065) | 0.0388 (0.032–0.053) | −0.005 (−0.021–(−0.001)) | 0.048 * | 0.3 |
Absolute Error Y b | 0.029 (0.025–0.037) | 0.025 (0.019–0.042) | −0.002 (−0.009–0.003) | 0.502 | 0.1 | |
Absolute Error XY b | 0.063 (0.051–0.076) | 0.0505 (0.041–0.064) | −0.009 (−0.019–0.000) | 0.052 | 0.3 | |
Variability X a | 0.039 (0.015) | 0.033 (0.009) | −0.006 (0.015) | 0.099 | 0.4 | |
Variability Y b | 0.016 (0.012–0.019) | 0.015 (0.011–0.019) | −0.002 (−0.003–0.003) | 0.526 | 0.1 | |
Variability XY a | 0.043 (0.017) | 0.037 (0.010) | −0.006 (0.015) | 0.105 | 0.4 | |
Contraction/expansion ratio X a | 0.937 (0.317) | 0.906 (0.249) | −0.031 (0.217) | 0.524 | 0.1 | |
Contraction/expansion ratio Y b | 0.980 (0.845–1.042) | 1.014 (0.890–1.081) | 0.024 (−0.042–0.075) | 0.526 | 0.1 | |
Contraction/expansion ratio XY a | 0.949 (0.424) | 0.925 (0.342) | −0.024 (0.273) | 0.696 | 0.1 | |
Shift X a | −0.001 (0.043) | −0.001 (0.044) | 0.000 (0.034) | 0.973 | 0.0 | |
Shift Y a | −0.019 (0.022) | −0.021 (0.025) | −0.002 (0.019) | 0.678 | 0.1 | |
Shift XY b | 0.042 (0.031–0.061 | 0.035 (0.022–0.053) | −0.004 (−0.016–0.007) | 0.391 | 0.1 | |
Task Score b | 1.753 (1.145–2.066) | 1.199 (0.460–1.853) | −0.448 (−0.806–0.092) | 0.030 * | 0.3 | |
Visually Guided Reaching | Posture Speed a | 0.005 (0.005) | 0.006 (0.005) | 0.002 (0.002) | <0.001 * | 0.9 |
Reaction Time b | 0.335 (0.302–0.354) | 0.325 (0.301–0.391) | 0.009 (−0.014–0.028) | 0.287 | 0.2 | |
Initial Direction Angle a | 0.066 (0.049) | 0.071 (0.070) | 0.005 (0.037) | 0.582 | 0.1 | |
Initial Distance Ratio a | 0.769 (0.215) | 0.764 (0.225) | −0.004 (0.126) | 0.881 | 0.0 | |
Initial Speed ratio a | 0.973 (0.042) | 0.958 (0.080) | −0.015 (0.074) | 0.378 | 0.2 | |
Speed Maxima Count a | 2.844 (1.365) | 2.757 (1.427) | −0.088 (1.011) | 0.703 | 0.1 | |
Min Max Speed Difference b | 0.020 (0.010–0.027) | 0.016 (0.013–0.027) | −0.002 (−0.005–0.001) | 0.156 | 0.2 | |
Movement Time a | 1.320 (0.447) | 1.237 (0.365) | −0.083 (0.350) | 0.303 | 0.2 | |
Path Length Ratio a | 1.195 (0.219) | 1.179 (0.174) | −0.016 (0.075) | 0.359 | 0.2 | |
Max Speed b | 0.193 (0.169–0.259) | 0.212 (0.186–0.239) | 0.011 (−0.003–0.030) | 0.279 | 0.2 | |
Task Score b | 2.998 (1.472–4.203) | 3.499 (1.639–3.909) | 0.061 (−0.571–0.662) | 0.823 | 0.0 | |
Discrimination Task | Factor Score a | −0.232 (1.278) | −0.306 (1.191) | 0.074 (1.001) | 0.746 | 0.1 |
Subject (N = 20) | Number of Repetitions |
---|---|
1 | 1061 |
2 | 935 |
3 | 1002 |
4 | 1028 |
5 | 723 |
6 | 852 |
7 | 1026 |
8 | 1236 |
9 | 1122 |
10 | 1024 |
11 | 1142 |
12 | 951 |
13 | 1125 |
14 | 1183 |
15 | 1116 |
16 | 939 |
17 | 1052 |
18 | 963 |
19 | 1204 |
20 | 1170 |
Mean (SD) | 1043 (127) |
Range | 723–1236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coremans, M.; Carmeli, E.; De Bauw, I.; Essers, B.; Lemmens, R.; Verheyden, G. Error Enhancement for Upper Limb Rehabilitation in the Chronic Phase after Stroke: A 5-Day Pre-Post Intervention Study. Sensors 2024, 24, 471. https://doi.org/10.3390/s24020471
Coremans M, Carmeli E, De Bauw I, Essers B, Lemmens R, Verheyden G. Error Enhancement for Upper Limb Rehabilitation in the Chronic Phase after Stroke: A 5-Day Pre-Post Intervention Study. Sensors. 2024; 24(2):471. https://doi.org/10.3390/s24020471
Chicago/Turabian StyleCoremans, Marjan, Eli Carmeli, Ineke De Bauw, Bea Essers, Robin Lemmens, and Geert Verheyden. 2024. "Error Enhancement for Upper Limb Rehabilitation in the Chronic Phase after Stroke: A 5-Day Pre-Post Intervention Study" Sensors 24, no. 2: 471. https://doi.org/10.3390/s24020471
APA StyleCoremans, M., Carmeli, E., De Bauw, I., Essers, B., Lemmens, R., & Verheyden, G. (2024). Error Enhancement for Upper Limb Rehabilitation in the Chronic Phase after Stroke: A 5-Day Pre-Post Intervention Study. Sensors, 24(2), 471. https://doi.org/10.3390/s24020471