Bridgman-Grown (Cd,Mn)Te and (Cd,Mn)(Te,Se): A Comparison of Suitability for X and Gamma Detectors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Hardness
3.2. Crystal Quality
3.2.1. Etch Pit Density
3.2.2. Lattice Constant
3.2.3. Presence of Blocks/Grains and Their Mutual Misorientation
3.2.4. Full Width at Half Maximum (FWHM) of Omega Scans
3.2.5. Tellurium Inclusions
3.3. Impact of Grain Boundaries and Twins
3.4. Photoluminescence Spectra of As-Grown and Annealed Crystals
3.5. Detector Response
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hossain, A.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Jones, D.; Hall, J.; Kim, K.H.; Mwathi, J.; Tong, X.; Yang, G.; et al. Novel approach to surface processing for improving the efficiency of CdZnTe detectors. J. Electron. Mater. 2014, 43, 2771–2777. [Google Scholar] [CrossRef]
- Abbene, L.; Gerardi, G.; Turturici, A.A.; Raso, G.; Benassi, G.; Bettelli, M.; Zambelli, N.; Zappettini, A.; Principato, F. X-ray response of CdZnTe detectors grown by the vertical Bridgman technique: Energy, temperature and high flux effects. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 835, 1–12. [Google Scholar] [CrossRef]
- Veale, M.C.; Booker, P.; Cross, S.; Hart, M.D.; Jowitt, L.; Lipp, J.; Schneider, A.; Seller, P.; Wheater, R.M.; Wilson, M.D.; et al. Characterization of the uniformity of high-flux CdZnTe material. Sensors 2020, 20, 2747. [Google Scholar] [CrossRef]
- Alam, M.D.; Nasim, S.S.; Hasan, S. Recent progress in CdZnTe based room temperature detectors for nuclear radiation monitoring. Prog. Nucl. Energy 2021, 140, 103918. [Google Scholar] [CrossRef]
- Rejhon, M.; Franc, J.; Dědič, V.; Pekárek, J.; Roy, U.N.; Grill, R.; James, R.B. Influence of deep levels on the electrical transport properties of CdZnTeSe detectors. J. Appl. Phys. 2018, 124, 235702. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; James, R.B. High-resolution virtual Frisch grid gamma-ray detectors based on as-grown CdZnTeSe with reduced defects. Appl. Phys. Lett. 2019, 114, 232107. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; James, R.B. Optimization of selenium in CdZnTeSe quaternary compound for radiation detector applications. Appl. Phys. Lett. 2021, 118, 152101. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Yang, G.; James, R.B. Impact of selenium addition to the cadmium-zinc-telluride matrix for producing high energy resolution X-and gamma-ray detectors. Sci. Rep. 2021, 11, 10338. [Google Scholar] [CrossRef]
- Rejhon, M.; Dedic, V.; Grill, R.; Franc, J.; Roy, U.N.; James, R.B. Low-temperature annealing of CdZnTeSe under bias. Sensors 2022, 22, 171. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Zazvorka, J.; Dedic, V.; Franc, J.; James, R.B. Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications. Sci. Rep. 2019, 9, 1620. [Google Scholar] [CrossRef]
- Moravec, P.; Franc, J.; Dedic, V.; Minarik, P.; Elhadidy, H.; Sima, V.; Grill, R.; Roy, U. Microhardness study of CdZnTeSe crystals for X-ray and gamma ray radiation detectors. In Proceedings of the 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) 2019, Manchester, UK, 26 October–2 November 2019; pp. 2–5. [Google Scholar] [CrossRef]
- Rejhon, M.; Dedic, V.; Beran, L.; Roy, U.N.; Franc, J.; James, R.B.; Dědič, V.; Beran, L.; Roy, U.N.; Franc, J.; et al. Investigation of Deep Levels in CdZnTeSe Crystal and Their Effect on the Internal Electric Field of CdZnTeSe Gamma-Ray Detector. IEEE Trans. Nucl. Sci. 2019, 66, 1952–1958. [Google Scholar] [CrossRef]
- Egarievwe, S.U.; Roy, U.N.; Goree, C.A.; Harrison, B.A.; Jones, J.; James, R.B. Ammonium fluoride passivation of CdZnTeSe sensors for applications in nuclear detection and medical imaging. Sensors 2019, 19, 3271. [Google Scholar] [CrossRef]
- Chaudhuri, S.K.; Sajjad, M.; Kleppinger, J.W.; Mandal, K.C. Charge transport properties in CdZnTeSe semiconductor room-temperature γ-ray detectors. J. Appl. Phys. 2020, 127, 245706. [Google Scholar] [CrossRef]
- Sajjad, M.; Chaudhuri, S.K.; Kleppinger, J.W.; Karadavut, O.; Mandal, K.C. Investigation on Cd0.9Zn0.1Te1-ySey single crystals grown by vertical Bridgman technique for high-energy gamma radiation detectors. In Proceedings of the Hard X-ray, Gamma-Ray, and Neutron Detector Physics XXII, Online, 20 August 2020; Volume 11494, pp. 222–233. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; James, R.B. Advances in CdZnTeSe for Radiation Detector Applications. Radiation 2021, 1, 123–130. [Google Scholar] [CrossRef]
- Pipek, J.; Betušiak, M.; Belas, E.; Grill, R.; Praus, P.; Musiienko, A.; Pekarek, J.; Roy, U.N.; James, R.B. Charge Transport and Space-Charge Formation in Cd1-xZnxTe1-ySey Radiation Detectors. Phys. Rev. Appl. 2021, 15, 054058. [Google Scholar] [CrossRef]
- Chaudhuri, S.K.; Kleppinger, J.W.; Karadavut, O.; Nag, R.; Mandal, K.C. Quaternary semiconductor Cd1-xZnxTe1-ySey for high-resolution room temperature gamma-ray detection. Crystals 2021, 11, 827. [Google Scholar] [CrossRef]
- Egarievwe, S.U.; Roy, U.N.; Agbalagba, E.O.; Dunning, K.L.; Okobiah, O.K.; Israel, M.B.; Drabo, M.L.; James, R.B. Characterization of CdMnTe Planar Nuclear Detectors Grown by Vertical Bridgman Technique. In Proceedings of the 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Manchester, UK, 26 October–2 November 2019; pp. 1–3. [Google Scholar]
- Egarievwe, S.U.; James, R.B.; Israel, M.B.; Banks, A.D.; Drabo, M.L.; Dunning, K.L.; Cook, V.J.; Johnson, F.D.; Palmer, S.M.; Roy, U.N.; et al. Design and fabrication of a CdMnTe nuclear radiation detection system. In Proceedings of the 2019 SoutheastCon, Huntsville, AL, USA, 11–14 April 2019; Volume 2019, pp. 1–4. [Google Scholar]
- Luan, L.; Lv, H.; Gao, L.; He, Y.; Zheng, D. Preparation and properties of hemispherical CdMnTe nuclear radiation detectors. Nucl. Instrum. Methods Phys. Res. B 2020, 471, 42–47. [Google Scholar] [CrossRef]
- Egarievwe, S.U.; Israel, M.B.; Davis, A.; McGuffie, M.; Hartage, K.; Alim, M.A.; Roy, U.N.; James, R.B. X-ray Photoelectron Spectroscopy of CdZnTe and CdMnTe Materials for Nuclear Detectors. In Proceedings of the 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Boston, MA, USA, 31 October–7 November 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Yu, P.; Gao, P.; Shao, T.; Liu, W.; Jiang, B.; Liu, C.; Ma, Z.; Zheng, J. Correlation between Te inclusions and the opto-electrical properties of CdMnTe and CdMgTe single crystals. J. Cryst. Growth 2021, 571, 126259. [Google Scholar] [CrossRef]
- Yu, P.; Shao, T.; Ma, Z.; Gao, P.; Jing, B.; Liu, W.; Liu, C.; Chen, Y.; Liu, Y.; Fang, Z.; et al. Influence of hydrogen treatment on electrical properties of detector-grade CdMnTe:In crystals. IEEE Trans. Nucl. Sci. 2021, 68, 458–462. [Google Scholar] [CrossRef]
- Byun, J.; Seo, J.; Park, B. Growth and characterization of detector-grade CdMnTeSe. Nucl. Eng. Technol. 2022, 54, 4215–4219. [Google Scholar] [CrossRef]
- Kim, Y.; Ko, J.; Byun, J.; Seo, J.; Park, B. Passivation effect on Cd0.95Mn0.05Te0.98Se0.02 radiation detection performance. Appl. Radiat. Isot. 2023, 200, 110914. [Google Scholar] [CrossRef]
- Hossain, A.; Yakimovich, V.; Bolotnikov, A.E.; Bolton, K.; Camarda, G.S.; Cui, Y.; Franc, J.; Gul, R.; Kim, K.H.; Pittman, H.; et al. Development of Cadmium Magnesium Telluride (Cd1−xMgxTe) for room temperature X- and gamma-ray detectors. J. Cryst. Growth 2013, 379, 34–40. [Google Scholar] [CrossRef]
- Trivedi, S.B.; Kutcher, S.W.; Palosz, W.; Berding, M.; Burger, A.; Palsoz, W.; Berding, M.; Burger, A. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride; Brimrose Technology Corporation: Sparks Glencoe, MD, USA, 2014. [Google Scholar]
- Mycielski, A.; Kochanowska, D.M.; Witkowska-Baran, M.; Wardak, A.; Szot, M.; Domagała, J.; Witkowski, B.S.; Jakieła, R.; Kowalczyk, L.; Witkowska, B. Investigation of Cd1−xMgxTe as possible materials for X and gamma ray detectors. J. Cryst. Growth 2018, 491, 73–76. [Google Scholar] [CrossRef]
- Yu, P.; Jiang, B.; Chen, Y.; Zheng, J.; Luan, L. Study on In-Doped CdMgTe Crystals Grown by a Modified Vertical Bridgman Method Using the ACRT Technique. Materials 2019, 12, 4236. [Google Scholar] [CrossRef]
- Yu, P.; Jiang, B.; Han, Z.; Zhao, S.; Gao, P.; Shao, T.; Liu, W.; Gu, X.; Wang, Y. Characterization of physical and optical properties of a new radiation detection material CdMgTe. Opt. Mater. 2022, 131, 112656. [Google Scholar] [CrossRef]
- Yu, P.; Gao, P.; Jiang, B.; Han, Z.; Zhao, S.; Liu, W.; Sun, X.; Luan, L.; Rao, T. Effects of electrode fabrication on electrical properties of CdMgTe room temperature radiation detectors. Mater. Sci. Semicond. Process. 2023, 153, 107178. [Google Scholar] [CrossRef]
- Camarda, G.; Yang, G.; Bolotnikov, A.E.; Cui, Y.; Hossain, A.; Kim, K.H.; Roy, U.; James, R.B. Characterization of Detector-Grade CdTeSe Crystals; Brookhaven National Lab. (BNL): Upton, NY, USA, 2013. [Google Scholar]
- Roy, U.N.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Lee, K.; Marshall, M.; Yang, G.; James, R.B. Growth of CdTexSe1−x from a Te-rich solution for applications in radiation detection. J. Cryst. Growth 2014, 386, 43–46. [Google Scholar] [CrossRef]
- Roy, U.N.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Lee, K.; Yang, G.; James, R.B. Evaluation of CdTexSe1− x crystals grown from a Te-rich solution. J. Cryst. Growth 2014, 389, 99–102. [Google Scholar] [CrossRef]
- Roy, U.N.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Lee, K.; Lee, W.; Tappero, R.; Yang, G.; Gul, R.; et al. High compositional homogeneity of CdTexSe1−x crystals grown by the Bridgman method. APL Mater. 2015, 3, 26102. [Google Scholar] [CrossRef]
- Gul, R.; Roy, U.N.; Egarievwe, S.U.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Yang, G.; James, R.B. Point defects: Their influence on electron trapping, resistivity, and electron mobility-lifetime product in CdTexSe1−x detectors. J. Appl. Phys. 2016, 119, 25702. [Google Scholar] [CrossRef]
- Mycielski, A.; Kochanowska, D.; Witkowska-Baran, M.; Wardak, A.; Szot, M.; Domagała, J.Z.; Jakieła, R.; Kowalczyk, L.; Witkowska, B. Semiconductor crystals based on CdTe with Se–Some structural and optical properties. J. Cryst. Growth 2018, 498, 405–410. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; James, R.B. Growth interface study of CdTeSe crystals grown by the THM technique. J. Cryst. Growth 2023, 616, 127261. [Google Scholar] [CrossRef]
- Schlesinger, T.E.; Toney, J.E.; Yoon, H.; Lee, E.Y.; Brunett, B.A.; Franks, L.; James, R.B. Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R Rep. 2001, 32, 103–189. [Google Scholar] [CrossRef]
- Mycielski, A.; Burger, A.; Sowinska, M.; Groza, M.; Szadkowski, A.; Wojnar, P.; Witkowska, B.; Kaliszek, W.; Siffert, P. Is the (Cd,Mn)Te crystal a prospective material for X-ray and γ-ray detectors? Phys. Status Solidi C 2005, 2, 1578–1585. [Google Scholar] [CrossRef]
- Wardak, A.; Kochanowska, D.M.; Kochański, M.; Dopierała, M.; Sulich, A.; Gdański, J.; Marciniak, A.; Mycielski, A. Effect of doping and annealing on resistivity, mobility-lifetime product, and detector response of (Cd,Mn)Te. J. Alloys Compd. 2023, 936, 168280. [Google Scholar] [CrossRef]
- Bridgman, P.W. Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin. Proc. Am. Acad. Arts Sci. 1925, 60, 305–383. [Google Scholar] [CrossRef]
- Rudolph, P.; Mühlberg, M. Basic problems of vertical Bridgman growth of CdTe. Mater. Sci. Eng. B 1993, 16, 8–16. [Google Scholar] [CrossRef]
- Roy, U.N.; Burger, A.; James, R.B. Growth of CdZnTe crystals by the traveling heater method. J. Cryst. Growth 2013, 379, 57–62. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Gul, R.; Yang, G.; Zazvorka, J.; Dedic, V.; Franc, J.; James, R.B. Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Sci. Rep. 2019, 9, 7303. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; James, R.B. X-ray topographic study of Bridgman-grown CdZnTeSe. J. Cryst. Growth 2020, 546, 125753. [Google Scholar] [CrossRef]
- Kim, K.; Kim, Y.; Franc, J.; Fochuk, P.; Bolotnikov, A.E.; James, R.B. Enhanced hole mobility-lifetime product in selenium-added CdTe compounds. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1053, 168363. [Google Scholar] [CrossRef]
- Zanio, K. Purification of CdTe from tellurium-rich solutions. J. Electron. Mater. 1974, 3, 327–351. [Google Scholar] [CrossRef]
- Zhang, J.; Jie, W.; Wang, T.; Zeng, D.; Ma, S.; Hua, H.; Yang, B. Crystal growth and characterization of Cd0.8Mn0.2Te using Vertical Bridgman method. Mater. Res. Bull. 2008, 43, 1239–1245. [Google Scholar] [CrossRef]
- Tanaka, A.; Masa, Y.; Seto, S.; Kawasaki, T. Zinc and selenium co-doped CdTe substrates lattice matched to HgCdTe. J. Cryst. Growth 1989, 94, 166–170. [Google Scholar] [CrossRef]
- Yakimov, A.; Smith, D.J.; Choi, J.; Araujo, S.L. Growth and characterization of detector-grade CdZnTeSe by horizontal Bridgman technique. In Proceedings of the Hard X-ray, Gamma-Ray, and Neutron Detector Physics XXI, International Society for Optics and Photonics. San Diego, CA, USA, 9 September 2019; Volume 11114, pp. 270–276. [Google Scholar]
- González-Hernández, J.; López-Cruz, E.; Allred, D.D.; Allred, W.P. Photoluminescence studies in ZnxCd1−xTe single crystals. J. Vac. Sci. Technol. A Vac. Surf. Film. 1990, 8, 3255–3259. [Google Scholar] [CrossRef]
- Lee, Y.R.; Ramdas, A.K. A piezomodulation study of the absorption edge and Mn++ internal transition in Cd1−xMnxTe, a prototype of diluted magnetic semiconductors. Solid State Commun. 1984, 51, 861–863. [Google Scholar] [CrossRef]
- Hannachi, L.; Bouarissa, N. Electronic structure and optical properties of CdSexTe1−x mixed crystals. Superlattices Microstruct. 2008, 44, 794–801. [Google Scholar] [CrossRef]
- Mycielski, A.; Wardak, A.; Kochanowska, D.; Witkowska-Baran, M.; Szot, M.; Jakieła, R.; Domagała, J.Z.; Kowalczyk, L.; Kochański, M.; Janusz, G.; et al. CdTe-based crystals with Mg, Se, or Mn as materials for X and gamma ray detectors: Selected physical properties. Prog. Cryst. Growth Character. Mater. 2021, 67, 100543. [Google Scholar] [CrossRef]
- Brown, P.D.; Durose, K.; Russell, G.J.; Woods, J. The absolute determination of CdTe crystal polarity. J. Cryst. Growth 1990, 101, 211–215. [Google Scholar] [CrossRef]
- Inoue, M.; Teramoto, I.; Takayanagi, S. Etch pits and polarity in CdTe crystals. J. Appl. Phys. 1962, 33, 2578–2582. [Google Scholar] [CrossRef]
- Wright, G.W.; James, R.B.; Chinn, D.; Brunett, B.A.; Olsen, R.W.; Van Scyoc III, J.M.; Clift, W.M.; Burger, A.; Chattopadhyay, K.; Shi, D.T. Evaluation of NH4F/H2O2 effectiveness as a surface passivation agent for Cd1−xZnxTe crystals. In Proceedings of the Hard X-ray, Gamma-Ray, and Neutron Detector Physics II, San Diego, CA, USA, 21 November 2000; Volume 4141, pp. 324–335. [Google Scholar]
- Franc, J.; Moravec, P.; Dědič, V.; Roy, U.; Elhadidy, H.; Minárik, P.; Šíma, V. Microhardness study of Cd1−x ZnxTe1−ySey crystals for X-ray and gamma ray detectors. Mater. Today Commun. 2020, 24, 101014. [Google Scholar] [CrossRef]
- Guergouri, K.; Triboulet, R.; Tromson-Carli, A.; Marfaing, Y. Solution hardening and dislocation density reduction in CdTe crystals by Zn addition. J. Cryst. Growth 1988, 86, 61–65. [Google Scholar] [CrossRef]
- Marchini, L.; Zappettini, A.; Zha, M.; Zambelli, N.; Bolotnikov, A.E.; Camarda, G.S.; James, R.B. Crystal defects in CdZnTe crystals grown by the modified low-pressure Bridgman method. IEEE Trans. Nucl. Sci. 2012, 59, 264–267. [Google Scholar] [CrossRef]
- Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Yang, G.; Hossain, A.; Kim, K.; James, R.B. Characterization and evaluation of extended defects in CZT crystals for gamma-ray detectors. J. Cryst. Growth 2013, 379, 46–56. [Google Scholar] [CrossRef]
- Butcher, J.; Hamade, M.; Petryk, M.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; De Geronimo, G.; Fried, J.; Hossain, A.; Kim, K.H.; et al. Drift time variations in CdZnTe detectors measured with alpha particles and gamma rays: Their correlation with detector response. IEEE Trans. Nucl. Sci. 2013, 60, 1189–1196. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; James, R.B. Characterization of large-volume Frisch grid detector fabricated from as-grown CdZnTeSe. Appl. Phys. Lett. 2019, 115, 242102. [Google Scholar] [CrossRef]
- Zou, J.; Fauler, A.; Senchenkov, A.S.; Kolesnikov, N.N.; Kirste, L.; Kabukcuoglu, M.P.; Hamann, E.; Cecilia, A.; Fiederle, M. Characterization of structural defects in (Cd,Zn)Te crystals grown by the travelling heater method. Crystals 2021, 11, 1402. [Google Scholar] [CrossRef]
- Nakagawa, K.; Maeda, K.; Takeuchi, S. Observation of dislocations in cadmium telluride by cathodoluminescence microscopy. Appl. Phys. Lett. 1979, 34, 574–575. [Google Scholar] [CrossRef]
- Xu, L.; Yu, B.; Yu, G.; Liu, H.; Zhang, L.; Li, X.; Huang, P.; Wang, B.; Wang, S. Study on the morphology of dislocation-related etch pits on pyramidal faces of KDP crystals. CrystEngComm 2021, 23, 2556–2562. [Google Scholar] [CrossRef]
- Darwin, C.G. The reflexion of X-rays from imperfect crystals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1922, 43, 800–829. [Google Scholar] [CrossRef]
- Roy, U.N.; Baker, J.N.; Camarda, G.S.; Cui, Y.; Yang, G.; James, R.B. Evaluation of crystalline quality of traveling heater method (THM) grown Cd0.9Zn0.1Te0.98Se0.02 crystals. Appl. Phys. Lett. 2022, 120, 242103. [Google Scholar] [CrossRef]
- Carini, G.A.; Camarda, G.S.; Zhong, Z.; Siddons, D.P.; Bolotnikov, A.E.; Wright, G.W.; Barber, B.; Arnone, C.; James, R.B. High-energy X-ray diffraction and topography investigation of CdZnTe. J. Electron. Mater. 2005, 34, 804–810. [Google Scholar] [CrossRef]
- Zeng, D.; Jie, W.; Wang, T.; Zha, G.; Zhang, J. Effects of mosaic structure on the physical properties of CdZnTe crystals. Nucl. Instrum. Methods Phys. Res. A 2008, 586, 439–443. [Google Scholar] [CrossRef]
- Carcelén, V.; Kim, K.H.; Camarda, G.S.; Bolotnikov, A.E.; Hossain, A.; Yang, G.; Crocco, J.; Bensalah, H.; Dierre, F.; Diéguez, E.; et al. Pt coldfinger improves quality of Bridgman-grown Cd0.9Zn0.1Te:Bi crystals. J. Cryst. Growth 2012, 338, 1–5. [Google Scholar] [CrossRef]
- Yu, P.; Chen, Y.; Li, W.; Liu, W.; Liu, B.; Yang, J.; Ni, K.; Luan, L.; Zheng, J.; Li, Z.; et al. Study of detector-grade CdMnTe:In crystals obtained by a multi-step post-growth annealing method. Crystals 2018, 8, 387. [Google Scholar] [CrossRef]
- Yu, P.; Xu, Y.; Luan, L.; Du, Y.; Zheng, J.; Li, H.; Jie, W. Quality improvement of CdMnTe:In single crystals by an effective post-growth annealing. J. Cryst. Growth 2016, 451, 194–199. [Google Scholar] [CrossRef]
- Kochanowska, D.; Rasiński, M.; Witkowska-Baran, M.; Lewandowska, M.; Mycielski, A. Studies of the surface regions of (Cd, Mn) Te crystals. Phys. Status Solidi 2014, 11, 1523–1527. [Google Scholar] [CrossRef]
- Wardak, A.; Chromiński, W.; Reszka, A.; Kochanowska, D.; Witkowska-Baran, M.; Lewandowska, M.; Mycielski, A. Stresses caused by Cd and Te inclusions in CdMnTe crystals and their impact on charge carrier transport. J. Alloys Compd. 2021, 874, 159941. [Google Scholar] [CrossRef]
- Witkowska-Baran, M.; Kochanowska, D.M.; Mycielski, A.; Jakieła, R.; Wittlin, A.; Knoff, W.; Suchocki, A.; Nowakowski, P.; Korona, K. Influence of annealing on the properties of (Cd,Mn)Te crystals. Phys. Status Solidi Curr. Top. Solid State Phys. 2014, 11, 1528–1532. [Google Scholar] [CrossRef]
- Meyer, B.K.; Omling, P.; Weigel, E.; Müller-Vogt, G. F center in CdTe. Phys. Rev. B 1992, 46, 15135. [Google Scholar] [CrossRef]
- Yang, J.H.; Yin, W.J.; Park, J.S.; Ma, J.; Wei, S.H. Review on first-principles study of defect properties of CdTe as a solar cell absorber. Semicond. Sci. Technol. 2016, 31, 083002. [Google Scholar] [CrossRef]
- Roy, U.N.; Okobiah, O.K.; Camarda, G.S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Egarievwe, S.U.; James, R.B. Growth and characterization of detector-grade CdMnTe by the vertical Bridgman technique. AIP Adv. 2018, 8, 105012. [Google Scholar] [CrossRef]
- Mele, F.; Quercia, J.; Abbene, L.; Benassi, G.; Bettelli, M.; Buttacavoli, A.; Principato, F.; Zappettini, A.; Bertuccio, G. Advances in High-Energy-Resolution CdZnTe Linear Array Pixel Detectors with Fast and Low Noise Readout Electronics. Sensors 2023, 23, 2167. [Google Scholar] [CrossRef] [PubMed]
- Abbene, L.; Principato, F.; Gerardi, G.; Buttacavoli, A.; Cascio, D.; Bettelli, M.; Amade, N.S.; Seller, P.; Veale, M.C.; Fox, O. Room-temperature X-ray response of cadmium–zinc–telluride pixel detectors grown by the vertical Bridgman technique. J. Synchrotron Radiat. 2020, 27, 319–328. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masłowska, A.; Kochanowska, D.M.; Sulich, A.; Domagala, J.Z.; Dopierała, M.; Kochański, M.; Szot, M.; Chromiński, W.; Mycielski, A. Bridgman-Grown (Cd,Mn)Te and (Cd,Mn)(Te,Se): A Comparison of Suitability for X and Gamma Detectors. Sensors 2024, 24, 345. https://doi.org/10.3390/s24020345
Masłowska A, Kochanowska DM, Sulich A, Domagala JZ, Dopierała M, Kochański M, Szot M, Chromiński W, Mycielski A. Bridgman-Grown (Cd,Mn)Te and (Cd,Mn)(Te,Se): A Comparison of Suitability for X and Gamma Detectors. Sensors. 2024; 24(2):345. https://doi.org/10.3390/s24020345
Chicago/Turabian StyleMasłowska, Aneta, Dominika M. Kochanowska, Adrian Sulich, Jaroslaw Z. Domagala, Marcin Dopierała, Michał Kochański, Michał Szot, Witold Chromiński, and Andrzej Mycielski. 2024. "Bridgman-Grown (Cd,Mn)Te and (Cd,Mn)(Te,Se): A Comparison of Suitability for X and Gamma Detectors" Sensors 24, no. 2: 345. https://doi.org/10.3390/s24020345
APA StyleMasłowska, A., Kochanowska, D. M., Sulich, A., Domagala, J. Z., Dopierała, M., Kochański, M., Szot, M., Chromiński, W., & Mycielski, A. (2024). Bridgman-Grown (Cd,Mn)Te and (Cd,Mn)(Te,Se): A Comparison of Suitability for X and Gamma Detectors. Sensors, 24(2), 345. https://doi.org/10.3390/s24020345