Moho Imaging with Fiber Borehole Strainmeters Based on Ambient Noise Autocorrelation
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Data Preprocessing
2.2.2. Phase Autocorrelation and Stacking
2.2.3. Time-Deep Conversion
3. Results
4. Discussion
Amount of Data Required for PAC Stabilization (Days) | ||||
---|---|---|---|---|
Station | XSM-E | XSM-N | XSM-NW | XSM-NE |
Without quality control measures | 103.75 | 94.50 | 110.50 | 65.50 |
Applying quality control measures | 85.00 | 75.00 | 90.75 | 60.00 |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, L.; Kanamori, H. Moho depth variation in southern California from teleseismic receiver functions. J. Geophys. Res. Solid Earth 2000, 105, 2969–2980. [Google Scholar] [CrossRef]
- Wittlinger, G.; Vergne, J.; Tapponnier, P.; Farra, V.; Poupinet, G.; Jiang, M.; Su, H.; Herquel, G. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet. Earth Planet. Sci. Lett. 2004, 221, 117–130. [Google Scholar] [CrossRef]
- Castro-Artola, O.; Iglesias, A.; Schimmel, M.; Cordoba-Montiel, F. Moho reflections within seismic noise autocorrelations. J. S. Am. Earth Sci. 2022, 120, 104080. [Google Scholar] [CrossRef]
- Lan, H.Q.; Chen, L.; Chevrot, S.; Talebian, M.; Wang, X.; Gao, Y.F.; Zhang, J.Y.; Wu, Z.M.; Shokati, M.; Jiang, M.M.; et al. Structure of the Western Jaz Murian Forearc Basin, Southeast Iran, Revealed by Autocorrelation and Polarization Analysis of Teleseismic P and S Waves. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023456. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, W.; Li, L.; Zhang, H.; Li, F. Review on Low-noise Broadband Fiber Optic Seismic Sensor and its Applications. J. Light. Technol. 2023, 41, 4153–4163. [Google Scholar] [CrossRef]
- Dou, S.; Lindsey, N.; Wagner, A.M.; Daley, T.M.; Freifeld, B.; Robertson, M.; Peterson, J.; Ulrich, C.; Martin, E.R.; Ajo-Franklin, J.B. Distributed Acoustic Sensing for Seismic Monitoring of The Near Surface: A Traffic-Noise Interferometry Case Study. Sci. Rep. 2017, 7, 11620. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.; Ajo-Franklin, J. Measurement of Surface-Wave Phase-Velocity Dispersion on Mixed Inertial Seismometer—Distributed Acoustic Sensing Seismic Noise Cross-Correlations. Bull. Seismol. Soc. Am. 2021, 111, 3432–3450. [Google Scholar] [CrossRef]
- Yang, Y.; Atterholt, J.W.; Shen, Z.C.; Muir, J.B.; Williams, E.F.; Zhan, Z.W. Sub-Kilometer Correlation Between Near-Surface Structure and Ground Motion Measured With Distributed Acoustic Sensing. Geophys. Res. Lett. 2022, 49, e2021GL096503. [Google Scholar] [CrossRef]
- Zhou, W.; Butcher, A.; Brisbourne, A.M.; Kufner, S.K.; Kendall, J.M.; Stork, A.L. Seismic Noise Interferometry and Distributed Acoustic Sensing (DAS): Inverting for the Firn Layer S-Velocity Structure on Rutford Ice Stream, Antarctica. J. Geophys. Res. Earth Surf. 2022, 127, 1153938. [Google Scholar] [CrossRef]
- Tibuleac, I.M.; von Seggern, D. Crust-mantle boundary reflectors in Nevada from ambient seismic noise autocorrelations. Geophys. J. Int. 2012, 189, 493–500. [Google Scholar] [CrossRef]
- Kennett, B.L.N.; Saygin, E.; Salmon, M. Stacking autocorrelograms to map Moho depth with high spatial resolution in southeastern Australia. Geophys. Res. Lett. 2015, 42, 7490–7497. [Google Scholar] [CrossRef]
- Becker, G.; Knapmeyer-Endrun, B. Crustal thickness across the Trans-European Suture Zone from ambient noise autocorrelations. Geophys. J. Int. 2018, 212, 1237–1254. [Google Scholar] [CrossRef]
- Becker, G.; Knapmeyer-Endrun, B. Crustal thickness from horizontal component seismic noise auto- and cross-correlations for stations in Central and Eastern Europe. Geophys. J. Int. 2019, 218, 429–445. [Google Scholar] [CrossRef]
- Claerbout, J.F. Synthesis of a layered medium from its acoustic transmission response. Geophysics 1968, 33, 264–269. [Google Scholar] [CrossRef]
- Gómez-García, C.; Lebedev, S.; Meier, T.; Xu, Y.; Le Pape, F.; Wiesenberg, L. Ambient noise autocorrelation scheme for imaging theP-wave reflectivity of the lithosphere. Geophys. J. Int. 2023, 233, 1671–1693. [Google Scholar] [CrossRef]
- Mroczek, S.; Tilmann, F. Joint ambient noise autocorrelation and receiver function analysis of the Moho. Geophys. J. Int. 2021, 225, 1920–1934. [Google Scholar] [CrossRef]
- Li, L.; Yao, H.; Zhang, B.; Li, J.; Shu, P.; Yang, Y.; Wang, X.; Zhou, D.; Zhao, P.; Luo, J. High resolution upper crustal velocity and seismogenic structure of the Huoshan “seismic window” in the Dabie orogenic belt. Front. Earth Sci. 2023, 11, 1110061. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zeng, R.S.; Mooney, W.D.; Hacker, B. A crustal model of the ultrahigh-pressure Dabie Shan orogenic belt, China, derived from deep seismic refraction profiling. J. Geophys. Res. Solid Earth 2000, 105, 10857–10869. [Google Scholar] [CrossRef]
- Guo, W.; Yang, Z.; Tian, X.; Liu, B.; Zheng, C.; Song, X.; Gao, Z.; Qiu, Y. Crustal structure and its tectonic implications beneath the middle–lower Yangtze metallogenic belt in Anhui Province: 3D deep seismic sounding results from airgun source in inland waters. Front. Earth Sci. 2023, 11, 1153938. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Li, L.; Huang, W.; Wu, Q. Fiber optic sensors for seismic wave detection. In Proceedings of the Thirteenth International Conference on Information Optics and Photonics (CIOP 2022), Xi’an, China, 7–10 August 2022; pp. 599–603. [Google Scholar]
- Bensen, G.D.; Ritzwoller, M.H.; Barmin, M.P.; Levshin, A.L.; Lin, F.; Moschetti, M.P.; Shapiro, N.M.; Yang, Y. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int. 2007, 169, 1239–1260. [Google Scholar] [CrossRef]
- Schuster, G.T. Seismic Interferometry; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Schimmel, M. Phase cross-correlations: Design, comparisons, and applications. Bull. Seismol. Soc. Am. 1999, 89, 1366–1378. [Google Scholar] [CrossRef]
- Schimmel, M.; Stutzmann, E.; Gallart, J. Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale. Geophys. J. Int. 2011, 184, 494–506. [Google Scholar] [CrossRef]
- Schimmel, M.; Paulssen, H. Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophys. J. Int. 1997, 130, 497–505. [Google Scholar] [CrossRef]
- Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. Update on CRUST1.0—A 1-degree global model of Earth’s crust. Geophys. Res. Abstr. 2013, 15, 2658. [Google Scholar]
- Gu, Q.; Li, D.; Ding, Z.; Kang, Q.; Yu, Y.; Wang, J.; Meng, K.; Yang, H.; Zhang, H.; Lv, Y. Crustal structure characteristics beneath the Shandong-Jiangsu-Anhui segment of the Tan-Lu fault zone and its adjacent regions using receiver functions. Chin. J. Geophys. 2022, 65, 3280–3296. [Google Scholar] [CrossRef]
- Cui, T.; Chen, X.; Zhan, Y.; Zhao, L.; Liu, Z. Characteristics of deep electrical structure and seismogenic structure beneath Anhui Huoshan earthquake area. Chin. J. Geophys. 2020, 63, 256–269. [Google Scholar] [CrossRef]
- Cheng, S.; Xiao, X.; Wu, J.; Wang, W.; Sun, L.; Wang, X.; Wen, L. Crustal thickness and Vp/Vs variation beneath continental China revealed by receiver function analysis. Geophys. J. Int. 2021, 228, 1731–1749. [Google Scholar] [CrossRef]
- Taylor, G.; Rost, S.; Houseman, G. Crustal imaging across the North Anatolian Fault Zone from the autocorrelation of ambient seismic noise. Geophys. Res. Lett. 2016, 43, 2502–2509. [Google Scholar] [CrossRef]
- Ventosa, S.; Schimmel, M.; Stutzmann, E. Extracting surface waves, hum and normal modes: Time-scale phase-weighted stack and beyond. Geophys. J. Int. 2017, 211, 30–44. [Google Scholar] [CrossRef]
- Schimmel, M.; Gallart, J. Frequency-dependent phase coherence for noise suppression in seismic array data. J. Geophys. Res. Solid Earth 2007, 112, 1–14. [Google Scholar] [CrossRef]
- Clarke, D.; Zaccarelli, L.; Shapiro, N.M.; Brenguier, F. Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise. Geophys. J. Int. 2011, 186, 867–882. [Google Scholar] [CrossRef]
- Oren, C.; Nowack, R.L. Seismic body-wave interferometry using noise autocorrelations for crustal structure. Geophys. J. Int. 2017, 208, 321–332. [Google Scholar] [CrossRef]
- Buffoni, C.; Schimmel, M.; Sabbione, N.C.; Rosa, M.L.; Connon, G. Crustal structure beneath Tierra del Fuego, Argentina, inferred from seismic P-wave receiver functions and ambient noise autocorrelations. Tectonophysics 2019, 751, 41–53. [Google Scholar] [CrossRef]
- Ku, H.H. Notes on the use of propagation of error formulas. J. Res. Natl. Bur. Stand. 1966, 70C, 263–273. [Google Scholar]
- Liou, J.G.; Zhang, R.Y.; Eide, E.A.; Maruyama, S.; Wang, X.; Ernst, W.G. Metamorphism and tectonics of high-P and ultrahigh-P belts in Dabie-Sulu Regions, eastern central China. In The Tectonic Evolution of Asia; Yin, A., Harrison, T.M., Eds.; Cambridge University Press: New York, NY, USA, 1996; pp. 300–344. [Google Scholar]
- Liu, Y.-c.; Sun, Y.; Zhang, J. Crustal structure and anisotropy beneath the Anhui province and its surroundings revealed by teleseismic receiver functions. Prog. Geophys. 2019, 34, 442–453. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W. New, improved version of Generic Mapping Tools released. Eos Trans. Am. Geophys. Union 1998, 79, 579. [Google Scholar] [CrossRef]
Station | Moho S-Wave Reflection Time (s) | Moho Depth (km) | Moho Depth in Cheng et al. (2021) [29] (km) |
---|---|---|---|
XSM | 21.79 ± 0.19 | 38.88 ± 2.82 | 36.86 ± 3.61 |
BYA | 20.69 ± 0.04 | 36.90 ± 2.42 | 37.47 ± 4.14 |
HJC | 21.11 ± 0.21 | 37.66 ± 2.79 | 37.04 ± 3.70 |
ZJW | 21.15 ± 0.24 | 37.73 ± 2.86 | 37.72 ± 4.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, G.; Huang, W.; Pan, X.; Zhang, W.; Zhang, G. Moho Imaging with Fiber Borehole Strainmeters Based on Ambient Noise Autocorrelation. Sensors 2024, 24, 4252. https://doi.org/10.3390/s24134252
Qi G, Huang W, Pan X, Zhang W, Zhang G. Moho Imaging with Fiber Borehole Strainmeters Based on Ambient Noise Autocorrelation. Sensors. 2024; 24(13):4252. https://doi.org/10.3390/s24134252
Chicago/Turabian StyleQi, Guoheng, Wenzhu Huang, Xinpeng Pan, Wentao Zhang, and Guanxin Zhang. 2024. "Moho Imaging with Fiber Borehole Strainmeters Based on Ambient Noise Autocorrelation" Sensors 24, no. 13: 4252. https://doi.org/10.3390/s24134252
APA StyleQi, G., Huang, W., Pan, X., Zhang, W., & Zhang, G. (2024). Moho Imaging with Fiber Borehole Strainmeters Based on Ambient Noise Autocorrelation. Sensors, 24(13), 4252. https://doi.org/10.3390/s24134252