Detection of Low-Concentration Biological Samples Based on a QBIC Terahertz Metamaterial Sensor
Abstract
:1. Introduction
2. Design and Sensing Performance Simulations
2.1. Structural Design of the Metamaterial Sensor
2.2. QBIC Characteristics and Performance Optimization
2.3. Sensing Performance Simulations
3. Experimental Methods
3.1. THz Spectroscopy Equipment
3.2. Fabrication of Metamaterial Sensor
3.3. Biological Sample Preparation
4. Experimental Results and Discussion
4.1. Detection of Lithium Citrate Based on the Metamaterial Sensor
4.2. Detection of BSA Based on the Metamaterial Sensor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, Y.; Shi, C.; Zhu, Y.; Gu, M.; Zhuang, S. Terahertz spectroscopy in biomedical field: A review on signal-to-noise ratio improvement. PhotoniX 2020, 1, 12. [Google Scholar] [CrossRef]
- D’Arco, A.; Di Fabrizio, M.; Dolci, V.; Petrarca, M.; Lupi, S. THz pulsed imaging in biomedical applications. Condens. Matter 2020, 5, 25. [Google Scholar] [CrossRef]
- Yan, H.; Fan, W.; Chen, X.; Liu, L.; Wang, H.; Jiang, X. Terahertz signatures and quantitative analysis of glucose anhydrate and monohydrate mixture. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 258, 119825. [Google Scholar] [CrossRef]
- Jun, S.; Ahn, Y. Terahertz thermal curve analysis for label-free identification of pathogens. Nat. Commun. 2022, 13, 3470. [Google Scholar] [CrossRef]
- Shih, K.; Pitchappa, P.; Jin, L.; Chen, C.H.; Singh, R.; Lee, C. Nanofluidic terahertz metasensor for sensing in aqueous environment. Appl. Phys. Lett. 2018, 113, 071105. [Google Scholar] [CrossRef]
- Liang, L.; Hu, X.; Wen, L.; Zhu, Y.; Yang, X.; Zhou, J.; Zhang, Y.; Carranza, I.E.; Grant, J.; Jiang, C. Unity integration of grating slot waveguide and microfluid for terahertz sensing. Laser Photonics Rev. 2018, 12, 1800078. [Google Scholar] [CrossRef]
- Geng, Z.; Zhang, X.; Fan, Z.; Lv, X.; Chen, H. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Sci. Rep. 2017, 7, 16378. [Google Scholar] [CrossRef]
- Shiraga, K.; Ogawa, Y.; Kondo, N.; Irisawa, A.; Imamura, M. Evaluation of the hydration state of saccharides using terahertz time-domain attenuated total reflection spectroscopy. Food Chem. 2013, 140, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Theuer, M.; Beigang, R.; Grischkowsky, D. Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor. Appl. Phys. Lett. 2010, 97, 071106. [Google Scholar] [CrossRef]
- Dolling, G.; Enkrich, C.; Wegener, M.; Soukoulis, C.M.; Linden, S. Simultaneous negative phase and group velocity of light in a metamaterial. Science 2006, 312, 892–894. [Google Scholar] [CrossRef]
- Yao, H.; Yan, X.; Yang, M.; Yang, Q.; Liu, Y.; Li, A.; Wang, M.; Wei, D.; Tian, Z.; Liang, L. Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials. Carbon 2021, 184, 400–408. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Geng, G.; Li, Z.; Li, J.; Cheng, H.; Chen, S.; Tian, J. Multiplexed nondiffracting nonlinear metasurfaces. Adv. Funct. Mater. 2020, 30, 1910744. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, M.; Yan, X.; Guo, X.; Li, J.; Yang, Y.; Wei, D.; Liu, L.; Xie, J.; Liu, Y.; et al. The Antibody-Free Recognition of Cancer Cells Using Plasmonic Biosensor Platforms with the Anisotropic Resonant Metasurfaces. ACS Appl. Mater. Interfaces 2020, 12, 11388–11396. [Google Scholar] [CrossRef]
- Islam, M.S.; Sultana, J.; Biabanifard, M.; Vafapour, Z.; Nine, M.J.; Dinovitser, A.; Cordeiro, C.M.B.; Ng, B.W.H.; Abbott, D. Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon 2020, 158, 559–567. [Google Scholar] [CrossRef]
- Chou Chao, C.-T.; Chen, S.-H.; Huang, H.J.; Chou Chau, Y.-F. Near-and mid-infrared quintuple-band plasmonic metamaterial absorber. Plasmonics 2023, 18, 1581–1591. [Google Scholar] [CrossRef]
- Sabaruddin, N.R.; Tan, Y.M.; Chou Chao, C.-T.; Kooh, M.R.R.; Chou Chau, Y.-F. High sensitivity of metasurface-based five-band terahertz absorber. Plasmonics 2024, 19, 481–493. [Google Scholar] [CrossRef]
- Blanchard, C.; Hugonin, J.P.; Sauvan, C. Fano resonances in photonic crystal slabs near optical bound states in the continuum. Phys. Rev. B 2016, 94, 155303. [Google Scholar] [CrossRef]
- Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 2012, 3, 1151. [CrossRef] [PubMed]
- Wu, J.; Jin, B.; Wan, J.; Liang, L.; Zhang, Y.; Jia, T.; Cao, C.; Kang, L.; Xu, W.; Chen, J. Superconducting terahertz metamaterials mimicking electromagnetically induced transparency. Appl. Phys. Lett. 2011, 99, 36. [Google Scholar] [CrossRef]
- Wu, Y.; Kang, L.; Bao, H.; Werner, D.H. Exploiting Topological Properties of Mie-Resonance-Based Hybrid Metasurfaces for Ultrafast Switching of Light Polarization. ACS Photonics 2020, 7, 2362–2373. [Google Scholar] [CrossRef]
- Park, S.; Cho, J.; Jeong, D.; Jo, J.; Nam, M.; Rhee, H.; Han, J.S.; Cho, Y.J.; Ju, B.-K.; Ko, D.-H. Simultaneous enhancement of luminescence and stability of CsPbBr3 perovskite nanocrystals via formation of perhydropolysilazane-derived nanopatterned film. Chem. Eng. J. 2020, 393, 124767. [Google Scholar] [CrossRef]
- Hsu, C.W.; Zhen, B.; Stone, A.D.; Joannopoulos, J.D.; Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 2016, 1, 16048. [Google Scholar] [CrossRef]
- Wang, J.; Li, P.; Zhao, X.; Qian, Z.; Wang, X.; Wang, F.; Zhou, X.; Han, D.; Peng, C.; Shi, L. Optical bound states in the continuum in periodic structures: Mechanisms, effects, and applications. Photonics Insights 2024, 3, R01. [Google Scholar]
- Zhong, H.; He, T.; Meng, Y.; Xiao, Q. Photonic Bound States in the Continuum in Nanostructures. Materials 2023, 16, 7112. [Google Scholar] [CrossRef]
- Kupriianov, A.S.; Xu, Y.; Sayanskiy, A.; Dmitriev, V.; Kivshar, Y.S.; Tuz, V.R. Metasurface engineering through bound states in the continuum. Phys. Rev. Appl. 2019, 12, 014024. [Google Scholar] [CrossRef]
- Romano, S.; Zito, G.; Yepez, S.N.L.; Cabrini, S.; Penzo, E.; Coppola, G.; Rendina, I.; Mocella, V. Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor. Opt. Express 2019, 27, 18776–18786. [Google Scholar] [CrossRef]
- Romano, S.; Mangini, M.; Penzo, E.; Cabrini, S.; De Luca, A.C.; Rendina, I.; Mocella, V.; Zito, G. Ultrasensitive Surface Refractive Index Imaging Based on Quasi-Bound States in the Continuum. ACS Nano 2020, 14, 15417–15427. [Google Scholar] [CrossRef]
- Yoon, J.W.; Song, S.H.; Magnusson, R. Critical field enhancement of asymptotic optical bound states in the continuum. Sci. Rep. 2015, 5, 18301. [Google Scholar] [CrossRef]
- Wang, R.; Xu, L.; Huang, L.; Zhang, X.; Ruan, H.; Yang, X.; Lou, J.; Chang, C.; Du, X. Ultrasensitive Terahertz Biodetection Enabled by Quasi-BIC-Based Metasensors. Small 2023, 19, 2301165. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, J.; Li, J.; Wang, L.; Li, Z.; Zheng, X.; Wen, L. Customizing 2.5 D Out-of-Plane Architectures for Robust Plasmonic Bound-States-in-the-Continuum Metasurfaces. Adv. Sci. 2023, 10, 2206236. [Google Scholar] [CrossRef]
- Liu, B.; Peng, Y.; Jin, Z.; Wu, X.; Gu, H.; Wei, D.; Zhu, Y.; Zhuang, S. Terahertz ultrasensitive biosensor based on wide-area and intense light-matter interaction supported by QBIC. Chem. Eng. J. 2023, 462, 142347. [Google Scholar] [CrossRef]
- Peng, J.; Lin, X.; Yan, X.; Yan, X.; Hu, X.; Yao, H.; Liang, L.; Ma, G. Terahertz Biosensor Engineering Based on Quasi-BIC Metasurface with Ultrasensitive Detection. Nanomaterials 2024, 14, 799. [Google Scholar] [CrossRef]
- Lin, T.; Huang, Y.; Zhong, S.; Shi, T.; Sun, F.; Zhong, Y.; Zeng, Q.; Zhang, Q.; Cui, D. Passive trapping of biomolecules in hotspots with all-dielectric terahertz metamaterials. Biosens. Bioelectron. 2024, 251, 116126. [Google Scholar] [CrossRef]
- Huang, C.; Liang, L.; Chang, P.; Yao, H.; Yan, X.; Zhang, Y.; Xie, Y. Terahertz Liquid Biosensor Based on A Graphene Metasurface for Ultrasensitive Detection with A Quasi-Bound State in the Continuum. Adv. Mater. 2024, 36, 2310493. [Google Scholar] [CrossRef]
- Güney, D.Ö.; Koschny, T.; Soukoulis, C.M. Reducing ohmic losses in metamaterials by geometric tailoring. Phys. Rev. B 2009, 80, 125129. [Google Scholar] [CrossRef]
- Yang, S.; Hong, C.; Jiang, Y.; Ndukaife, J.C. Nanoparticle Trapping in a Quasi-BIC System. ACS Photonics 2021, 8, 1961–1971. [Google Scholar] [CrossRef]
- Kirill, K.; Sergey, L.; Mingkai, L.; Andrey, B.; Yuri, K. Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum. Phys. Rev. Lett. 2018, 121, 193903. [Google Scholar]
- Cong, L.; Singh, R. Symmetry-protected dual bound states in the continuum in metamaterials. Adv. Opt. Mater. 2019, 7, 1900383. [Google Scholar] [CrossRef]
- Tan, T.C.; Srivastava, Y.K.; Ako, R.T.; Wang, W.; Bhaskaran, M.; Sriram, S.; Al-Naib, I.; Plum, E.; Singh, R. Active Control of Nanodielectric-Induced THz Quasi-BIC in Flexible Metasurfaces: A Platform for Modulation and Sensing. Adv. Mater. 2021, 33, 2100836. [Google Scholar] [CrossRef]
- Yang, J.; Wang, M.; De, H.; Kang, Y.; Li, Z.; Liu, Q.; Xiong, L.; Wu, Z.; Qu, W.; Shang, L. Dual-band terahertz sensor based on metamaterial absorber integrated microfluidic. Acta Opt. Sin. 2021, 41, 2328001. [Google Scholar]
- Deng, X.; Shen, Y.; Liu, B.; Song, Z.; He, X.; Zhang, Q.; Ling, D.; Liu, D.; Wei, D. Terahertz metamaterial sensor for sensitive detection of citrate salt solutions. Biosensors 2022, 12, 408. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Li, J.; de la Chapelle, M.L.; Huang, G.; Wang, Y.; Zhang, J.; Xu, D.; Yao, J.; Yang, X.; Fu, W. A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification. Biosens. Bioelectron. 2021, 175, 112874. [Google Scholar] [CrossRef]
- Wang, R.; Xu, L.; Wang, J.; Sun, L.; Jiao, Y.; Meng, Y.; Chen, S.; Chang, C.; Fan, C. Electric Fano resonance-based terahertz metasensors. Nanoscale 2021, 13, 18467–18472. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Hu, F.; Zhou, Y. High Q-value terahertz metamaterial sensor based on double ellipse structure. Acta Opt. Sin. 2021, 41, 199–205. [Google Scholar]
- Wang, D.; Xu, K.-D.; Luo, S.; Cui, Y.; Zhang, L.; Cui, J. A high Q-factor dual-band terahertz metamaterial absorber and its sensing characteristics. Nanoscale 2023, 15, 3398–3407. [Google Scholar] [CrossRef]
- Roberts, E. A case of chronic mania treated with lithium citrate and terminating fatally. Med. J. Aust. 1950, 2, 261–262. [Google Scholar] [CrossRef]
- Shen, Y.; Li, X.; Wang, J.; Liu, H.; Jing, J.; Deng, X.; Wei, D. Low-concentration biological sample detection using an asymmetric split resonator terahertz metamaterial. Photonics 2023, 10, 111. [Google Scholar] [CrossRef]
- Hou, X.; Chen, X.; Li, T.; Li, Y.; Tian, Z.; Wang, M. Highly sensitive terahertz metamaterial biosensor for bovine serum albumin (BSA) detection. Opt. Mater. Express 2021, 11, 2268–2277. [Google Scholar] [CrossRef]
- Gangqi, W.; Fengjie, Z.; Tingting, L.; Jianjun, L.; Zhi, H.; Jianyuan, Q. All-metal terahertz metamaterial biosensor for protein detection. Nanoscale Res. Lett. 2021, 16, 109. [Google Scholar]
- Silalahi, H.M.; Chen, Y.-P.; Shih, Y.-H.; Chen, Y.-S.; Lin, X.-Y.; Liu, J.-H.; Huang, C.-Y. Floating terahertz metamaterials with extremely large refractive index sensitivities. Photonics Res. 2021, 9, 1970–1978. [Google Scholar] [CrossRef]
Structures | S (GHz/RIU) | Reference |
---|---|---|
Metal rings and double “I” cross structure | 300 | [40] |
Asymmetric open ring | 328 | [41] |
Gold nanoparticles and gold wires | 123.45 | [42] |
QBIC-Fano Resonance | 165 | [43] |
Double elliptic QBIC structure | 293 | [44] |
Periodic array of two ring chain resonators | 420 | [31] |
Square ring with T-shaped strips | 37 | [45] |
Double-chain resonant cavity QBIC | 544 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, B.; Wei, B.; Wei, D.; Ke, Z.; Ling, D. Detection of Low-Concentration Biological Samples Based on a QBIC Terahertz Metamaterial Sensor. Sensors 2024, 24, 3649. https://doi.org/10.3390/s24113649
Dong B, Wei B, Wei D, Ke Z, Ling D. Detection of Low-Concentration Biological Samples Based on a QBIC Terahertz Metamaterial Sensor. Sensors. 2024; 24(11):3649. https://doi.org/10.3390/s24113649
Chicago/Turabian StyleDong, Bing, Bo Wei, Dongshan Wei, Zhilin Ke, and Dongxiong Ling. 2024. "Detection of Low-Concentration Biological Samples Based on a QBIC Terahertz Metamaterial Sensor" Sensors 24, no. 11: 3649. https://doi.org/10.3390/s24113649
APA StyleDong, B., Wei, B., Wei, D., Ke, Z., & Ling, D. (2024). Detection of Low-Concentration Biological Samples Based on a QBIC Terahertz Metamaterial Sensor. Sensors, 24(11), 3649. https://doi.org/10.3390/s24113649