Differential BroadBand (1–16 GHz) MMIC GaAs mHEMT Low-Noise Amplifier for Radio Astronomy Applications and Sensing
Abstract
:1. Introduction
2. Issues of Broadband DLNA Design
2.1. Process D007IH
- The letter D means the transistors are in depletion mode and use double-mushroom gates (see Figure 1).
- The number 007 means the transistors are built in an mHEMT technology process with a 70 nm gate length.
- The letters IH mean the active component is InP-doped based on the active layer or employs a high-indium (In)-content epitaxial active layer (it employs InGaAs–InAlAs–InGaAsInAlAs epitaxy with 52 indium content on a metamorphic buffer over a GaAs semi-insulating substrate) (see Figure 1).
2.2. Transistor Selection and Architecture of the LNA
- Gain, G > 26 dB in a frequency band ranging from 1 to 16 GHz. The LNA circuit gain in this design was chosen to be at a moderate range of around 26 dB to 33 dB. The upper gain value is to prevent the circuit from oscillating, which commonly happens in very high-gain circuits. Input and output return loss is specified to be better than 5 dB.
- Noise figure, < 1.4 dB. In this MMIC, the is targeted to be better than 1.4 dB over a very wide range of frequencies in the band of interest from 1 to 16 GHz.
- The selected architecture must be differential to minimize the effects of common-mode noise so that it can also function as an active balun in reception antennas or of the sensor with differential power.
- There are no compression point requirements at the output at 1 dB (), but a high level of compression will be positively valued.
2.3. DLNA Matching Networks Strategy and Design
2.4. Chip Simulations
2.5. DLNA Design Procedure Summary
- Defining specifications and requirements: The first step is to clearly define the DLNA specifications and requirements. This includes determining the operating frequency range (1–16 GHz), the desired gain level (30 dB), the maximum allowable noise figure (<1.5 dB), and other relevant parameters. Establishing these specifications provides a guideline for designing and evaluating the performance of the LNA.
- Selection of the foundry and the transistor: The OMMIC foundry was chosen due to its current status as having the lowest noise figure among open foundries. The selection of the appropriate transistor is critical to the LNA performance. A transistor is selected based on its ability to meet the design specifications, such as low noise figure and high gain, which are crucial. The OMMIC PDK utilizes available transistor models and selects the polarization point.
- Design of the RF circuit: After selecting the transistor, the next step is to design the RF circuit of the LNA. This involves determining the topology of the circuit (differential topology) and the number of stages (three stages), as well as arranging components such as inductors, capacitors, and resistors to optimize performance in terms of gain, noise figure, stability, and bandwidth.
- Initial simulation: After designing the RF circuit, specialized RF circuit design software, such as AWR, is used to perform an initial simulation. This stage allows for the identification of potential design issues and preliminary adjustments to improve DLNA performance.
- Design optimization: The DLNA design is optimized based on the initial simulation results. This involves adjusting circuit parameters and performing design iterations to improve performance according to previously established specifications.
- Detailed simulation based on electromagnetic (EM) simulation: After completing the design optimization, a detailed electromagnetic (EM) simulation is performed using the AWR AXIEM RF circuit simulation software. This simulation is crucial in evaluating the performance of the DLNA and ensuring its compliance with the design specifications.
- Construction and testing: Once the design has been optimized and validated through simulation, the graphic file of the layers and integrated components of the DLNA prototype design (i.e., GDS file) is sent to the foundry for construction of the MMICs. The foundry, whose processes are protected by industrial secrecy, carries out the construction and first experimental tests, as well as visual inspections to verify that the design has been correctly constructed according to the GDS file provided.
- Measurement, final validation, and refinement: The DLNA undergoes a thorough validation to ensure it meets all initial specifications and requirements. This involves a measurement campaign on the different prototypes to validate that the initial design specifications are met. Once completed, the DLNA is ready for implementation in practical applications.
- Proper selection of active devices (transistors): The use of active devices, such as high-frequency transistors, with high bandwidth characteristics (i.e., large ) helps extend the frequency range over which the LNA can operate effectively. In this case, the selected OMMIC foundry process is essential for both noise and .
- Broadband impedance matching network design: Implementing matching networks at the input, output, and intermediate stages of the LNA that are designed to operate over a wide range of frequencies improves the frequency response of the amplifier over the entire spectrum of interest.
- Design optimization: The objective of design optimization is to minimize losses and reflections in transmission lines and connections between circuit components. This is carried out to help maintain the response within the bandwidth and to minimize signal degradation at higher frequencies.
- Proper selection of MMIC components: The selection of MMIC components is crucial for significantly improving the bandwidth of the LNA. The OMMIC process technology employed exerts a profound influence on the outcome. Therefore, components with a high-quality factor (Q) and commendable performance at high frequencies are utilized. To attain this objective, the inductors employed are minimized. Additionally, capacitors and resistors must be designed to perform optimally over a wide frequency range and with the highest Q possible.
3. Simulations Carried Out in the Carrier Circuit
4. Measurements
4.1. Small-Signal Measurements
4.2. Noise Measurements
4.3. Large-Signal Measurements
4.4. Single-Ended vs. Differential LNA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schleeh, J.; Moschetti, G.; Wadefalk, N.; Cha, E.; Pourkabirian, A.; Alestig, G.; Halonen, J.; Nilsson, B.; Nilsson, P.A.; Grahn, J. Cryogenic LNAs for SKA band 2 to 5. In Proceedings of the 2017 IEEE/MTT-S International Microwave Symposium–IMS 2017, Honololu, HI, USA, 4–9 June 2017; pp. 164–167. [Google Scholar]
- Schleeh, J.; Wadefalk, N.; Nilsson, P.-Å.; Starski, J.P.; Grahn, J. Cryogenic Broadband Ultra-Low-Noise MMIC LNAs for Radio Astronomy Applications. IEEE Trans. Microw. Theory Tech. 2013, 61, 871–877. [Google Scholar] [CrossRef]
- Chen, H.-H.; Cheng, W.-C.; Hsieh, C.-H.; Tsai, Z.-M. Design and Analysis of High-Gain and Compact Single-Input Differential-Output Low Noise Amplifier for 5G Applications. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 535–538. [Google Scholar] [CrossRef]
- Miranda, R.F.; Barriquello, C.H.; Reguera, V.A.; Denardin, G.W.; Thomas, D.H.; Loose, F.; Amaral, L.S. A Review of Cognitive Hybrid Radio Frequency/Visible Light Communication Systems for Wireless Sensor Networks. Sensors 2023, 23, 7815. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ko, H. A Dynamic Instrumentation Amplifier for Low-Power and Low-Noise Biopotential Acquisition. Sensors 2016, 16, 354. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Z.; Wang, X.; Liu, H.; Zhang, G. An MMIC LNA for Millimeter-Wave Radar and 5G Applications with GaN-on-SiC Technology. Sensors 2023, 23, 6611. [Google Scholar] [CrossRef] [PubMed]
- Klumperink, E.A.M.; Bruccoleri, F.; Stroet, P.; Nauta, B. Amplifiers Exploiting Thermal Noise Canceling: A Review. In Proceedings of the 12th Gallium Arsenide and Other Compound Semiconductor Application Symposium (GAAS), Amsterdam, NL, USA, 11–15 October 2004; pp. 371–374. [Google Scholar]
- Kelly, M.; Angelov, I.; Starski, J.P.; Wadefalk, N.; Zirath, H. 4–8 GHz Low Noise Amplifiers using metamorphic HEMT Technology. In Proceedings of the 2006 European Microwave Integrated Circuits Conference, Manchester, UK, 10–13 September 2006; pp. 118–121. [Google Scholar]
- Takenaka, T.; Miyazaki, A.; Matsuura, H.; Iwaoka, H. MMIC’s for an integrated RF spectrum analyzer front end. IEEE Trans. Instrum. Meas. 1995, 44, 716–719. [Google Scholar] [CrossRef]
- Galante-Sempere, D.; del Pino, J.; Khemchandani, S.L.; García-Vázquez, H. Miniature Wide-Band Noise-Canceling CMOS LNA. Sensors 2022, 22, 5246. [Google Scholar] [CrossRef] [PubMed]
- Song, I.; Ryu, G.; Jung, S.H.; Cressler, J.D.; Cho, M.-K. Wideband SiGe-HBT Low-Noise Amplifier with Resistive Feedback and Shunt Peaking. Sensors 2023, 23, 6745. [Google Scholar] [CrossRef]
- Heinz, F.; Thome, F.; Leuther, A.; Ambacher, O. C-Band Low-Noise Amplifier MMIC with an Average Noise Temperature of 44.5 K and 24.8 mW Power Consumption. In Proceedings of the 16th European Microwave Integrated Circuits Conference (EuMIC), London, UK, 3–4 April 2022. [Google Scholar]
- Leuther, A.; Tessmann, A.; Kallfass, I.; Losch, R.; Seelmann-Eggebert, M.; Wadefalk, N.; Schafer, F.; Puyol, J.D.G.; Schlechtweg, M.; Mikulla, M.; et al. Metamorphic HEMT technology for low-noise applications. In Proceedings of the IEEE International Conference on Indium Phosphide & Related Materials (IPRM), Newport Beach, CA, USA, 10–14 May 2009; pp. 188–191. [Google Scholar]
- Tessmann, A.; Kallfass, I.; Leuther, A.; Massler, H.; Schlechtweg, M.; Ambacher, O. Metamorphic MMICs for Operation Beyond 200 GHz. In Proceedings of the European Microwave Integrated Circuit Conference (EuMIC), Amsterdam, The Netherlands, 27–28 October 2008; pp. 210–213. [Google Scholar]
- Park, J.-W.; Mohammadi, S.; Pavlidis, D.; Dua, C.; Guyaux, J.; Garcia, J.-C. GaInP/GaAs HBT broadband monolithic transimpedance amplifiers and their high frequency small and large signal characteristics. In Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Digest of Papers, Baltimore, MD, USA, 8–11 June 1998; pp. 179–182. [Google Scholar] [CrossRef]
- Ciccognani, W.; Giannini, F.; Limiti, E.; Longhi, P.E. Full W-Band High-Gain LNA in mHEMT MMIC Technology. In Proceedings of the European Microwave Integrated Circuit Conference (EuMIC), Amsterdam, The Netherlands, 27–28 October 2008; pp. 314–317. [Google Scholar]
- Tao, R.; Berroth, M.; Wang, Z. Monolithically integrated CMOS current-mode transimpedance preamplifier. Electron. Lett. 2003, 39, 1772–1774. [Google Scholar] [CrossRef]
- Takagi, K.; Kashiwabara, Y.; Masuda, K.; Matsushita, K.; Sakurai, H.; Onodera, K.; Kawasaki, H.; Takada, Y.; Tsuda, K. Ku-band AlGaN/GaN HEMT with over 30W. In Proceedings of the European Microwave Integrated Circuit Conference, Munich, Germany, 8–10 October 2007; pp. 169–172. [Google Scholar]
- Ho, P.-H.; Chiong, C.-C.; Wang, H. An ultra low-power Q-band LNA with 50% bandwidth in WIN GaAs 0.1-μm pHEMT process. In Proceedings of the Asia Pacific Microwave Conference–(APMC 2013), Seoul, Republic of Korea, 5–8 November 2013; pp. 713–715. [Google Scholar]
- Acedo, E.d.L.; Garcia, E.; González-Posadas, V.; Vazquez-Roy, J.L.; Maaskant, R.; Segovia, D. Study and Design of a Differentially-Fed Tapered Slot Antenna Array. IEEE Trans. Antennas Propag. 2009, 58, 68–78. [Google Scholar] [CrossRef]
- Hall, P.-J.; Schilizzi, R.-T.; Dewdney, P.E.F.; Lazio, T.J.W. The square kilometer array (SKA) radio telescope: Progress and technical directions. URSI Radio Sci. Bull. 2008, 2008, 4–19. [Google Scholar]
- Garcia-Perez, Ó.; Segovia-Vargas, D.; Garcia-Munoz, L.E.; Jimenez-Martin, J.L.; Gonzalez-Posadas, V. Broadband Differential Low-Noise Amplifier for Active Differential Arrays. IEEE Trans. Microw. Theory Tech. 2010, 59, 108–115. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Woo, D.-S.; Kim, K.W.; Cho, Y.-K. A New Ultra-wideband Microstrip-to-CPS Transition. In Proceedings of the 2007 IEEE/MTT-S International Microwave Symposium, Honolulu, HI, USA, 3–8 June 2007; pp. 1563–1566. [Google Scholar] [CrossRef]
- Gharpurey, R. A broadband low-noise front-end amplifier for ultra wideband in 0.13 μm CMOS. In Proceedings of the IEEE 2004 Custom Integrated Circuits Conference, Orlando, FL, USA, 6 October 2004. [Google Scholar]
- Ali, F.; Hutchinson, C.; Podell, A. A novel cascode feedback GaAs MMIC LNA with transformer-coupled output using multiple fabrication processes. IEEE Microw. Guid. Wave Lett. 1992, 2, 70–72. [Google Scholar] [CrossRef]
- Kumar, P.S.; Ch, V.; Thouti, S.; Kumar, G.P.; Rajeswaran, N. High Gain More Stable Self Biased Two Stage Differential Amplifier for Bio-signal Processing. In Proceedings of the 9th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 17–18 March 2023; pp. 1859–1863. [Google Scholar]
- Arbet, D.; Nagy, G.; Kovac, M.; Stopjakova, V. Fully Differential Difference Amplifier for Low-Noise Applications. In Proceedings of the IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Belgrade, Serbia, 22–24 April 2015; pp. 57–62. [Google Scholar]
- Martins, E.; Gomes, M.; Bastida, E.; Swart, J. Design of a LNA and a Gilbert cell mixer MMICs with a GaAs PHEMT technology. In Proceedings of the SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Rio de Janeiro, Brazil, 9–12 August 1999. [Google Scholar]
- Gawande, R.; Bradley, R. Low-Noise Amplifier at 2.45 GHz [TC Contests. IEEE Microw. Mag. 2010, 11, 122–126. [Google Scholar] [CrossRef]
- Werker, S.; Stedler, C.; Kronberger, R. Highly Linear Low Noise Amplifier for 2.45 GHz. IEEE Microw. Mag. 2012, 13, 146–151. [Google Scholar] [CrossRef]
- Wu, C.-S.; Chang, C.-H.; Lin, T.-Y.; Wu, H.-M. A ultrawideband 3–10 GHz low-noise amplifier MMIC using inductive-series peaking technique. In Proceedings of the International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011; pp. 5667–5670. [Google Scholar] [CrossRef]
- Shiramizu, N.; Masuda, T.; Tanabe, M.; Washio, K. A 3–10 GHz bandwidth low-noise and low-power amplifier for full-band UWB communications in 0.25-μm SiGe BiCMOS technology. In Proceedings of the IEEE Radio Frequency integrated Circuits (RFIC) Symposium–Digest of Papers, Long Beach, CA, USA, 12–14 June 2005; pp. 39–42. [Google Scholar] [CrossRef]
- Hamada, H.; Tsutsumi, T.; Itami, G.; Sugiyama, H.; Matsuzaki, H.; Okada, K.; Nosaka, H. 300-GHz 120-Gb/s wireless transceiver with highoutput-power and high-gain power amplifier based on 80-nm InP-HEMT technology. In Proceedings of the IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), Nashville, TN, USA, 3–6 November 2019; pp. 1–4. [Google Scholar]
- Friis, H.T. Noise figures of radio receivers. Proc. IRE 1944, 32, 419–422. [Google Scholar] [CrossRef]
- Long, S.; Escotte, L.; Graffeuil, J.; Brasseau, F.; Cazaux, J.L. On-wafer noise characterization of low-noise amplifiers in the Ka-band. IEEE Trans. Instrum. Meas. 2003, 52, 1606–1610. [Google Scholar] [CrossRef]
- Ferrero, A.; Pisani, U. An improved calibration technique for on-wafer large-signal transistor characterization. IEEE Trans. Instrum. Meas. 1993, 42, 360–364. [Google Scholar] [CrossRef]
- Schwarz, D. How to Eliminate Layout Induced Oscillations. Available online: https://www.keysight.com/us/en/library/demos/how-to-video/how-to-eliminate-layout-induced-oscillations-2749187.html (accessed on 19 April 2024).
- Robertson, D.; Lucyszyn, S. RFIC and MMIC Design and Technology; The Institution of Electrical Engineers: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Lane, R.Q. The determination of device noise parameters. Proc. IEEE 1969, 57, 1461–1462. [Google Scholar] [CrossRef]
- Fukui, H. Optimal noise figure of microwave GaAs MESFET’s. IEEE Trans. Electron Devices 1979, 26, 1032–1037. [Google Scholar] [CrossRef]
- Varonen, M.; Reeves, R.; Kangaslahti, P.; Samoska, L.; Kooi, J.W.; Cleary, K.; Gawande, R.S.; Akgiray, A.; Andy, F.; Todd, G.; et al. An MMIC low-noise amplifier design technique. IEEE Trans. Microw. Theory Tech. 2015, 64, 826–835. [Google Scholar] [CrossRef]
- Kulkarni, R.S.; Kumar, V.; Dhar, J.; Rao, C.V.N. Broadband Low Noise Amplifier Design For Optimal Noise and Impedance Matching. In Proceedings of the IEEE Wireless Antenna and Microwave Symposium (WAMS), Ahmedabad, India, 7–10 June 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Stratakos, G.E.; Uzunoglu, N.K. Design of a MMIC low noise amplifier at 10 GHz. Proc. Int. Conf. Microelectron. 1995, 2, 773–778. [Google Scholar] [CrossRef]
- Semyonova, L.M.; Osipov, A.M. Design of L- and S-Band MMIC Low Noise Amplifiers. In Proceedings of the 17th International Crimean Conference–Microwave & Telecommunication Technology, Sevastopol, Ukraine, 10–14 September 2007; pp. 95–96. [Google Scholar] [CrossRef]
- Liu, Q.; Lei, Q.; Zhao, E.; Gao, Y.; Zhang, Z.; Xie, B. A 3~10 GHz High Gain Low Noise Amplifier with Transformer Feedback Technique. In Proceedings of the 2nd International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT), Hangzhou, China, 1–3 July 2022; pp. 48–51. [Google Scholar] [CrossRef]
- Woods, D. Reappraisal of the unconditional stability criteria for active 2-port networks in terms of s parameters. IEEE Trans. Circuits Syst. 1976, 23, 73–81. [Google Scholar] [CrossRef]
- Edwards, M.L.; Sinsky, J.H. A new criterion for linear 2-port stability using a single geometrically derived parameter. IEEE Trans. Microw. Theory Tech. 1992, 40, 2303–2311. [Google Scholar] [CrossRef]
- Platzker, A.; Struble, W.; Hetzler, K.T. Instabilities diagnosis and the role of k in microwave circuits. In Proceedings of the 1993 IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 14–18 June 1993; Volume 3, pp. 1185–1188. [Google Scholar] [CrossRef]
- Struble, W.; Platzker, A. A rigorous yet simple method for determining stability of linear N-port networks [and MMIC application]. In Proceedings of the 15th Annual GaAs IC Symposium, San Jose, CA, USA, 10–13 October 1993; pp. 251–254. [Google Scholar] [CrossRef]
- González-Posadas, V.; Jiménez-Martín, J.L.; Parra-Cerrada, A.; Espinosa Adams, D.; Hernandez, W. Stability, Mounting, and Measurement Considerations for High-Power GaN MMIC Amplifiers. Sensors 2023, 23, 9602. [Google Scholar] [CrossRef] [PubMed]
- Fubini, E.G.; Sutro, P.J. A Wide-Band Transformer from an Unbalanced to a Balanced Line. Proc. IRE 1947, 35, 1153–1155. [Google Scholar] [CrossRef]
- Arar, S. Balun Basics and Practical Performance Parameters. Available online: https://www.allaboutcircuits.com/technical-articles/balun-basics-and-practical-performance-parameters/ (accessed on 22 March 2024).
- Sengal, U.; Yu, W. Demystifying Transformers: Baluns and Ununs. Available online: https://blog.minicircuits.com/demystifying-transformers-baluns-and-ununs/ (accessed on 22 March 2024).
- Sobhy, E.A.; Helmy, A.A.; Hoyos, S.; Entesari, K.; Sanchez-Sinencio, E. A 2.8-mW Sub-2-dB Noise-Figure Inductorless Wideband CMOS LNA Employing Multiple Feedback. IEEE Trans. Microw. Theory Tech. 2011, 59, 3154–3161. [Google Scholar] [CrossRef]
- Adamian, V.; Uhlir, A., Jr. A Novel Procedure for Receiver Noise Characterization. IEEE Trans. Instrum. Meas. 1973, 22, 181–182. [Google Scholar] [CrossRef]
- Adamian, V.; Uhlir, A., Jr. Simplified Noise evaluation of Microwave Receivers. IEEE Trans. Instrum. Meas. 1984, 33, 136–140. [Google Scholar] [CrossRef]
- Tiemeijer, L.F.; Havens, R.J.; de Kort, R.; Scholten, A.J. Improved Y-factor method for wide-band on-wafer noise-parameter measurements. IEEE Trans. Microw. Theory Tech. 2005, 53, 2917–2925. [Google Scholar] [CrossRef]
- Heuermann, H.; Schiek, B. Results of network analyzer measurements with leakage errors-corrected with direct calibration techniques. IEEE Trans. Instrum. Meas. 1997, 46, 1120–1127. [Google Scholar] [CrossRef]
- Chen, C.; Mehdi, G.; Wang, C.; Dilshad, U.; Hu, A.; Miao, J. A GaAs Power Detector Design for C-Band Wideband Complex Cross Correlation Measurement. IEEE Trans. Instrum. Meas. 2020, 69, 5673–5683. [Google Scholar] [CrossRef]
- Samoska, L.; Varonen, M.; Reeves, R.; Cleary, K.; Gawande, R.; Kangaslahti, P.; Gaier, T.; Lai, R.; Sarkozy, S. W-Band cryogenic InP MMIC LNAs with noise below 30 K. In Proceedings of the IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar] [CrossRef]
- Seelmann-Eggebert, M.; Schäfer, F.; Leuther, A.; Massler, H. A versatile and cryogenic mHEMT-model including noise. In Proceedings of the IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010; pp. 501–504. [Google Scholar] [CrossRef]
- Grundbacher, R.; Lai, R.; Barsky, M.; Tsai, R.; Gaier, T.; Weinreb, S.; Dawson, D.; Bautista, J.J.; Davis, J.F.; Erickson, N.; et al. 0.1 μm InP HEMT devices and MMICs for cryogenic low noise amplifiers from X-band to W-band. In Proceedings of the 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307), Stockholm, Sweden, 12–16 May 2002; pp. 455–458. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Q.; Xu, L. A K-band Single-to-Differential Broadband Low Noise Amplifier with LC Anti-interference Network. In Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT), Nanjing, China, 23–26 May 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Schleeh, J.; Alestig, G.; Halonen, J.; Malmros, A.; Nilsson, B.; Nilsson, P.A.; Starski, J.P.; Wadefalk, N.; Zirath, H.; Grahn, J. Ultralow-Power Cryogenic InP HEMT with Minimum Noise Temperature of 1 K at 6 GHz. IEEE Electron Device Lett. 2012, 33, 664–666. [Google Scholar] [CrossRef]
- Wong, W.-T.; Hosseini, M.; Rücker, H.; Bardin, J.C. A 1 mW Cryogenic LNA Exploiting Optimized SiGe HBTs to Achieve an Average Noise Temperature of 3.2 K from 4–8 GHz. In Proceedings of the IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 4–6 August 2020; pp. 181–184. [Google Scholar] [CrossRef]
- Montazeri, S.; Wong, W.-T.; Coskun, A.H.; Bardin, J.C. Ultra-Low-Power Cryogenic SiGe Low-Noise Amplifiers: Theory and Demonstration. IEEE Trans. Microw. Theory Tech. 2016, 64, 178–187. [Google Scholar] [CrossRef]
- Bardin, J.C. Cryogenic Low-Noise Amplifiers: Noise Performance and Power Dissipation. IEEE Solid-State Circuits Mag. 2021, 13, 22–35. [Google Scholar] [CrossRef]
- Nilsson, P.A.; Pourkabirian, A.; Schleeh, J.; Wadefalk, N.; Starski, J.P.; Alestig, G.; Halonen, J.; Nilsson, B.; Zirath, H.; Grahn, J. Cryogenic low noise amplifiers in an InP HEMT MMIC process. In Proceedings of the Asia-Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Tomassetti, G.; Weinreb, S.; Wellington, K. Low-noise 10. 7 GHz cooled GaAs FET amplifier. Electron. Lett. 1981, 17, 949–950. [Google Scholar] [CrossRef]
- Gallego, J.D.; López-Fernández, I.; Diez, C.; Barcia, A. Experimental results of gain fluctuations and noise in microwave low-noise cryogenic amplifiers. Proc. SPIE 2004, 5470, 402–413. [Google Scholar] [CrossRef]
- Salmanogli, A.; Sirat, V.S. Design of ultra-low noise amplifier for quantum applications (QLNA). Quantum. Inf. Process. 2024, 23, 91. [Google Scholar] [CrossRef]
- Salmanogli, A. An exact method using quantum theory to calculate the noise figure in a low noise amplifier. arXiv 2021, arXiv:2108.05037. [Google Scholar] [CrossRef]
- Yamagata, M.; Hashemi, H. A Differential X/Ku-Band Low Noise Amplifier in 0.13-μm CMOS Technology. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 888–890. [Google Scholar] [CrossRef]
(nm) | Thickness (μm) | (GHz) | (GHz) | (mS/mm) | (mA/mm) | (V) |
---|---|---|---|---|---|---|
70 | 100 | 300 | 350 | 2500 | 600 | 3 (G-D) |
Parameter | Dual Single-Ended LNA | DLNA |
---|---|---|
Gain | 30.5 ± 2 dB | 30.5 ± 2 dB |
1–16 GHz | 1–16 GHz | |
<−14 dB | <−14 dB | |
5.9 dBm | 8.5 dBm | |
1 | 1 | |
T | 90 K | 90 K |
Stability | OK | OK |
86 GHz/mW | 145.5 GHz/mW | |
NA | ≈40 dB |
Parameter | DLNA | [2] | [22] | [24] | [42] | [73] |
---|---|---|---|---|---|---|
Process | 70 nm GaAs | 130 nm InP GaAs | NA Hybrid | 130 nm CMOS | 250 nm GaAs | 130 nm CMOS |
Gain (dB) | 30.5 ± 2 | 13 | 16 | 16 | <20 | <13 |
(GHz) | 1–16 GHz | 0.5–13 GHz | 0–1.2 GHz | 1–6 GHz | 1–10 GHz | 7–15 GHz |
(dBm) | 8.5 dBm | NR | NR | −8 dBm | 10–14 dBm | NR |
(dB) | 1 | <1 | <1.6 | 4.7 | <2.36 | >3.1 |
(GHz/mW) | 145.5 | ≈52 | ≈0.2 | 2.1 | ≈4 | 1.07 |
(dB) | ≈40 | NA | 27 | NA | NA | NR |
Chip Size (mm × mm) | 1.5 × 2 | 2 × 0.75 | 22.4 × 16.6 | 0.4 × 0.6 | 2.7 × 1.7 | 2.1 × 1.185 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimenez-Martin, J.L.; Gonzalez-Posadas, V.; Parra-Cerrada, A.; Espinosa-Adams, D.; Segovia-Vargas, D.; Hernandez, W. Differential BroadBand (1–16 GHz) MMIC GaAs mHEMT Low-Noise Amplifier for Radio Astronomy Applications and Sensing. Sensors 2024, 24, 3141. https://doi.org/10.3390/s24103141
Jimenez-Martin JL, Gonzalez-Posadas V, Parra-Cerrada A, Espinosa-Adams D, Segovia-Vargas D, Hernandez W. Differential BroadBand (1–16 GHz) MMIC GaAs mHEMT Low-Noise Amplifier for Radio Astronomy Applications and Sensing. Sensors. 2024; 24(10):3141. https://doi.org/10.3390/s24103141
Chicago/Turabian StyleJimenez-Martin, Jose Luis, Vicente Gonzalez-Posadas, Angel Parra-Cerrada, David Espinosa-Adams, Daniel Segovia-Vargas, and Wilmar Hernandez. 2024. "Differential BroadBand (1–16 GHz) MMIC GaAs mHEMT Low-Noise Amplifier for Radio Astronomy Applications and Sensing" Sensors 24, no. 10: 3141. https://doi.org/10.3390/s24103141
APA StyleJimenez-Martin, J. L., Gonzalez-Posadas, V., Parra-Cerrada, A., Espinosa-Adams, D., Segovia-Vargas, D., & Hernandez, W. (2024). Differential BroadBand (1–16 GHz) MMIC GaAs mHEMT Low-Noise Amplifier for Radio Astronomy Applications and Sensing. Sensors, 24(10), 3141. https://doi.org/10.3390/s24103141