MOSFE-Capacitor Silicon Carbide-Based Hydrogen Gas Sensors
Abstract
:1. Introduction
2. Experimental
2.1. Samples’ Production and Setup Description
- SiCn+/4H-SiC substrate (n-type epitaxial layer 4 µm thick with uncompensated donors’ concentration Nd-Na = 6…7·1015 cm−3, and n-4H-SiC substrate with resistivity 0.015…0.017 Ω·cm),
- Ta2O5 layer obtained by Tantalum deposition using PLD and subsequent metal film oxidation in the air by using a muffle furnace at 650 °C,
- ohmic Pt contact, also obtained by the PLD method.
2.2. Response Speed Determination
2.3. The Influence of the Measuring Test Signal Frequency
2.4. The Influence of the Sensor Operation Temperature
- 200 °C for SiC Samples No. 1 and No. 2;
- 100 °C for the Control Si sample.
2.5. Investigation of the Hydrogen Sensitivity and LOD
- LOD Sample No. 1–375 ppb;
- LOD Sample No. 2–500 ppb;
- Sample No. 1—τ0.9 = 1 ± 0.5; τ0.1 = 2 ± 1; τfull = 7 ± 2;
- Sample No. 2—τ0.9 = 5 ± 1; τ0.1 = 5 ± 2; τfull = 30 ± 10;
- Control sample—τ0.9 = 5 ± 3; τ0.1 = 10 ± 5; τfull = 20 ± 5.
3. Discussion
- (1)
- reducing the temperature effect on the CV characteristics;
- (2)
- increase of Hydrogen sensitivity function ΔC(CH2) by 1–2 orders of magnitude;
- (3)
- the response speed increase is not worse than 2 times.
Structure Type | Gas Sensor Type | Operating Temperature, °C | Hydrogen Concentration, ppm | Voltage Shift, mV | References |
---|---|---|---|---|---|
Pt/nanostructured RuO2/SiC | Schottky Diode | 240 | 600 | 57 | [9] |
Pt/SnO2 nanowires/SiC | Schottky Diode | 420 | 2500 | 70 | [40] |
10,000 | 132 | ||||
530 | 2500 | 95 | |||
10,000 | 310 | ||||
Pt/WO3/SiC | 530 | 10,000 | 80 | ||
Pt/Ga2O3/SiC | 310 | 10,000 | 210 | ||
Pt/TaOx/SiO2/SiC | MOSFEC | 300 | 500 | 325 | [22] |
Pd/Ta2O5/SiO2/Si | MOSFEC | 100 | 500 | 470 | [34] |
Pd/Ta2O5/SiO2/Si (Control Sample) | MOSFEC | 100 | 100 | 400 | this work |
1000 | 650 | ||||
Pd/Ta2O5/SiC (Samples No. 1) | 200 | 100 | 250 | ||
1000 | 550 | ||||
Pt/Ta2O5/SiC (Samples No. 2) | 100 | 130 | |||
1000 | 450 |
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lundstrom, I.; Shivaraman, M.S.; Svensson, C.; Lundkvist, L. Hydrogen sensitive MOS field-effect transistor. Appl. Phys. Lett. 1975, 26, 55–57. [Google Scholar] [CrossRef]
- Method and Device for Detection of. Hydrogen. Patent GB 1520456 A; application 08 Sept. 1975, completed specification published, 09 August 1978.
- Bergveld, P. Thirty years of ISFETOLOGY. What happened in the past 30 years and what may happen in the next 30 years? Sens. Actuators B Chem. 2003, 88, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Soo, M.T.; Cheong, K.Y.; Noor, A.F.M. Advances of SiC-based MOS capacitor hydrogen sensors for harsh environment applications. Sens. Actuators B Chem. 2010, 151, 39–55. [Google Scholar] [CrossRef]
- Werner, M.R.; Fahrner, W.R. Review on materials, microsensors, systems, and devices for high-temperature and harsh-environment applications. IEEE Trans. Ind. Electron. 2001, 48, 249–257. [Google Scholar] [CrossRef]
- Spetz, A.; Arbab, A.; Lundström, I. Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices. Sens. Actuators B Chemical 1992, 15, 19–23. [Google Scholar]
- Ivanov, P.A.; Panteleev, V.N.; Samsonova, T.P.; Suvorov, A.V.; Chelnokov, V.E. MOS capacitor based on thermally oxidized n-6H-SiC (0001). Phys. Tech. Semicond. 1993, 27, 1146–1153. Available online: https://journals.ioffe.ru/articles/1538 (accessed on 30 January 2023). (In Russian).
- Schalwig, J.; Kreisl, P.; Ahlers, S.; Müller, G. Response mechanism of SiC-based MOS field-effect gas sensors. IEEE Sens. J. 2002, 2, 394–402. [Google Scholar] [CrossRef]
- Yu, J.; Shafiei, M.; Comini, E.; Ferroni, M.; Sberveglieri, G.; Latham, K.; Kalantar-Zadeh, K.; Wlodarski, W. Pt/Nanostructured RuO2/SiC Schottky Diode Based Hydrogen Gas Sensors. Sens. Lett. 2011, 9, 797–800. [Google Scholar] [CrossRef]
- Zeiser, R.; Wagner, P.; Wilde, J. Assembly and packaging technologies for high-temperature SiC sensors. In Proceedings of the IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, USA, 29 May–1 June 2012; pp. 338–343. [Google Scholar]
- Andersson, M.; Pearce, R.; Lloyd Spetz, A. New generation SiC based field effect transistor gas sensors. Sens. Actuators B Chem. 2013, 179, 95–106. [Google Scholar] [CrossRef]
- Fashandi, H.; Soldemo, M.; Weissenrieder, J.; Gothelid, M.; Eriksson, J.; Eklund, P.; Lloyd Spetz, A.; Andersson, M. Applicability of MOS structures in monitoring catalytic properties, as exemplified for monolayer-iron-oxide-coated porous platinum films. J. Catal. 2016, 344, 583–590. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Wang, Z.; Hu, Y. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures. Sensors 2012, 12, 5517–5550. [Google Scholar] [CrossRef] [Green Version]
- Buttner, W.J.; Post, M.B.; Burgess, R.; Rivkin, C. An overview of hydrogen safety sensors and requirements. Int. J. Hydrog. Energy 2011, 36, 2462–2470. [Google Scholar] [CrossRef]
- Samotaev, N.; Litvinov, A.; Oblov, K.; Etrekova, M.; Podlepetsky, B.; Dzhumaev, P. Combination of Material Processing and Characterization Methods for Miniaturization of Field-Effect Gas Sensor. Sensors 2023, 23, 514. [Google Scholar] [CrossRef]
- Etrekova, M.; Litvinov, A.; Samotaev, N.; Filipchuk, D.; Oblov, K.; Mikhailov, A. Investigation of Selectivity and Reproducibility Characteristics of Gas Capacitive MIS Sensors. Proceedings of the International Youth Conference on Electronics, Telecommunications and Information Technologies YETI.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 87–95. [Google Scholar]
- Bolodurin, B.A.; Mikhailov, A.A.; Filipchuk, D.V.; Etrekova, M.O.; Korchak, V.Y.; Pomazan, Y.V.; Litvinov, A.V.; Nozdrya, D.A. Comprehensive Research on the Response of MIS Sensors of Pd-SiO2-Si and Pd-Ta2O5-SiO2-Si Structures to Various Gases in Air. Russ. J. Gen. Chem. 2018, 88, 2732–2739. [Google Scholar] [CrossRef]
- Kandyla, M.; Chatzimanolis-Moustakas, C.; Guziewicz, M.; Kompitsas, M. Nanocomposite NiO:Pd hydrogen sensors with sub-ppm detection limit and low operating temperature. Mater. Lett. 2014, 119, 51–55. [Google Scholar]
- Lee, J.-H.; Kim, J.-Y.; Kim, J.-H.; Kim, S.-S. Enhanced Hydrogen Detection in ppb-Level by Electrospun SnO2-Loaded ZnO Nanofibers. Sensors 2019, 19, 726. [Google Scholar] [CrossRef] [Green Version]
- Fasaki, I.; Kandyla, M.; Tsoutsouva, M.G.; Kompitsas, M. Optimized hydrogen. sensing properties of nanocomposite NiO:Au thin films grown by dual pulsed. laser deposition. Sens. Actuators B Chem. 2013, 176, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Chen, G.; Li, C.X.; Shafiei, M.; Ou, J.; Plessis, J.; Kalantar-Zadeh, K.; Lai, P.T.; Wlodarski, W. Hydrogen gas sensing properties of Pt/Ta2O5 Schottky diodes based on Si and SiC substrates. Procedia Eng. 2010, 5, 147–151. [Google Scholar] [CrossRef]
- Casals, O.; Becker, T.; Godignon, P.; Romano-Rodriguez, A. SiC-based MIS gas sensor for high water vapor environments. Sens. Actuators B Chem. 2012, 175, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Spetz, A.L.; Baranzahi, A.; Tobias, P.; Lundström, I. High temperature sensors based on metal insulator silicon carbide devices. Phys. Status Solidi A 1997, 162, 493. [Google Scholar] [CrossRef]
- Zorman, C.A.; Parro, R.J. Micro- and nanomechanical structures for silicon carbide MEMS and NEMS. Phys. Stat. Sol. B Spec. Issue Silicon Carbide Curr. Trends Res. Appl. 2008, 245, 1404–1424. [Google Scholar] [CrossRef]
- Lundstrom, I.; Sundgren, H.; Winquist, F.; Eriksson, M.; Krantzrulcker, C.; Lloyd Spetz, A. Twenty-five years of field effect gas sensor research in Linköping. Sens. Actuators B Chem. 2007, 121, 247–262. [Google Scholar] [CrossRef]
- Podlepetsky, B.I.; Samotaev, N.N.; Etrekova, M.O.; Litvinov, A.V. Methods and Tools for Evaluating the Characteristics of MIS-Capacitor Gas Sensors. Autom. Remote Control 2022, 83, 1639–1651. [Google Scholar] [CrossRef]
- Etrekova, M.O.; Litvinov, A.V.; Samotaev, N.N.; Kaziev, A.V.; Gorevoy, A.T. Formation of Gas-Sensitive MIS Sensors Electrodes: Comparison of Pulsed Laser Deposition and Magnetron Sputtering Methods. Proceedings of the 13th International Scientific and Practical Conference on Physics and Technology of Nanoheterostructural Microwave Electronics (Moscow); National Research Nuclear University “MEPhI”: Moscow, Russia, 2022; p. 51. (In Russian) [Google Scholar]
- Samotaev, N.N.; Oblov, K.Y.; Gorshkova, A.V.; Ivanova, A.V.; Philipchuk, D.V. Ceramic packages prototyping for electronic components by using laser micromilling technology. J. Phys. Conf. Ser. 2020, 1686, 012010. [Google Scholar] [CrossRef]
- Samotaev, N.; Oblov, K.; Etrekova, M.; Veselov, D.; Ivanova, A.; Litvinov, A. Improvement of field effect capacity type gas sensor thermo inertial parameters by using laser micromilling technique. Mater. Sci. Forum 2020, 977, 256–260. [Google Scholar] [CrossRef]
- Etrekova, M.; Oblov, K.; Samotaev, N.; Litvinov, A. Laser Micro Milling Technology for SMD Housing of Gas Sensors for Measuring Hydrogen Dissolved in Transformer Oil. In New Materials: Advanced Technologies for Obtaining and Processing Materials.; Abstracts of the 19th International School-Conference for Young Scientists and Specialists (Moscow); National Research Nuclear University “MEPhI”: Moscow, Russia, 2021; p. 157. (In Russian) [Google Scholar]
- Available online: http://acam-e.ru/pdf/DB_PCap01Ax_0301_en.pdf (accessed on 30 January 2023).
- Samotaev, N.N.; Litvinov, A.V.; Podlepetsky, B.I.; Etrekova, M.O.; Philipchuk, D.V.; Mikhailov, A.A.; Bukharov, D.G.; Demidov, V.M. Methods of Measuring the Output Signals of the Gas-Sensitive Sensors Based on MOS-Capacitors. Datchiki Syst. 2019, 5, 47–53. (In Russian) [Google Scholar]
- Available online: https://www.aktakom.ru/kio/index.php?SECTION_ID=2116&ELEMENT_ID=11289676 (accessed on 30 January 2023). (In Russian).
- Etrekova, M.O.; Litvinov, A.V.; Samotaev, N.N.; Korolev, N.A. Volt-Farade Characteristics and Mechanism of Sensitivity of Sensors on the Basis of MIS-Structure. Open Readings Named After Ras Corresponding Member, Professor V.G. Mokerov (Moscow), 2019, 165–166. Available online: https://www.elibrary.ru/item.asp?id=39224857 (accessed on 30 January 2023). (In Russian).
- Samotaev, N.; Oblov, K.; Litvinov, A.; Etrekova, M. SnO2-Pd as a Gate Material for the Capacitor Type Gas Sensor. In Proceedings of the 2019 IEEE 31st International Conference on Microelectronics, MIEL, Nis, Serbia, 16–18 September 2019; pp. 153–156. [Google Scholar]
- Etrekova, M.O.; Samotaev, N.N.; Litvinov, A.V.; Mikhailov, A.A.; Podlepetsky, B.I. Sensitivity of MIS Capacitors with Palladium Electrode to Aromatic Nitro Compounds Vapor. Chem. Saf. Sci. 2022, 6, 163–172. Available online: http://chemsafety.ru/index.php/chemsafety/article/view/222 (accessed on 30 January 2023).
- Sobocinski, M.; Khajavizadeh, L.; Andersson, M.; Lloyd Spetz, A.; Juuti, J.; Jantunen, H. Performance of LTCC embedded SiC gas sensors. Procedia Eng. 2015, 120, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Coppola, L.; Huff, D.; Wang, F.; Burgos, R.; Boroyevich, D. Survey on high-temperature packaging materials for SiC-based power electronics modules. In Proceedings of the Power Electronics Specialists Conference, Orlando, FL, USA, 17–21 June 2007; pp. 2234–2240. [Google Scholar]
- Darmastuti, Z.; Bur, C.; Lindqvist, N.; Andersson, M.; Schütze, A.; Lloyd Spetz, A. Hierarchical methods to improve the performance of the SiC-FET as SO2 sensors in flue gas desulphurization systems. Sens. Actuators B Chem. 2015, 206, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Shafiei, M.; Kalantar-Zadeh, K.; Wlodarski, W.; Comini, E.; Ferroni, M.; Sberveglieri, G.; Kaciulis, S.; Pandolfi, L. Hydrogen gas sensing performance of Pt/SnO2 nanowires/SiC MOS devices. Int. J. Smart Sens. Intell. Syst. 2008, 1, 771–783. [Google Scholar] [CrossRef] [Green Version]
Sample | T, °C | τ0,9, min | τ0,1, min | τfull, min | Sensitivity, pF/ppm | Ubias, V |
---|---|---|---|---|---|---|
No. 1 | 50 | 1 | ≈20 | >45 | 0.04 | −3.5 |
200 | 0.5 | 1.2 | ≈10 | 1.88 | −2.0 | |
No. 2 | 50 | 20 | ∞ | ∞ | 0.11 | −3.0 |
200 | 4 | 7 | ≈45 | 0.50 | −3.0 | |
Control | 50 | 1 | >30 | ∞ | 0.25 | −2.0 |
200 | 0.5 | 1 | 3 | 0.16 | −3.5 |
Parameter → | Ubias, V | ΔCmax, nF | Cref, nF | ΔUbias, V | |
---|---|---|---|---|---|
Sample | ↓ Frequency, kHz | ||||
No. 1 | 2 | +0.5 | 8.0 ± 1.5 | 4.5 ± 0.5 | −0.58 ± 0.05 |
20 | +0.8 | 8.0 ± 1.0 | −0.59 ± 0.05 | ||
200 | +1.1 | 7.8 ± 1.0 | −0.70 ± 0.10 | ||
No. 2 | 2 | +0.4 | 34 ± 3 | 29 ± 6 | −0.25 ± 0.05 |
20 | +0.6 | 30 ± 3 | −0.24 ± 0.05 | ||
200 | +0.9 | 22 ± 3 | −0.23 ± 0.05 | ||
Control | 2 | 0 | 0.11 ± 0.05 | 1.6 ± 0.2 | −0.52 ± 0.25 |
20 | −1.9 | 0.16 ± 0.02 | −0.50 ± 0.10 | ||
200 | −3.0 | 0.17 ± 0.01 | −0.45 ± 0.05 |
Measuring Device → | RLC-Meter (20 kHz; 50 mV) | Board CDC | |||||
---|---|---|---|---|---|---|---|
Parameter → | Ubias, V | ΔCmax, nF | Cref, nF | ΔUbias, V | Ubias, V | ΔCmax, nF | |
Sample | ↓ T, °C | ||||||
No. 1 | 50 | ≈+3.6 | ≈1.5 | 5.0 | −0.20 ± 0.10 | −3.0 | 0.04 |
100 | +1.7 | 7.3 ± 1.0 | −1.20 ± 0.05 | — | — | ||
150 | +0.8 | 8.1 ± 1.0 | −0.60 ± 0.05 | — | — | ||
200 | +0.8 | 8.0 ± 1.0 | −0.60 ± 0.05 | ≥1.8 | >2.4 | ||
220 | +0.5 | 7.4 ± 1.0 | −0.50 ± 0.05 | — | — | ||
No. 2 | 50 | ≈+2.5 | ≈80 ± 20 | 30 | → 0 | +0.5 | 0.19 |
100 | +1.1 | 35 ± 5 | −0.20 ± 0.05 | — | — | ||
150 | +0.75 | 45 ± 1 | −0.45 ± 0.05 | — | — | ||
200 | +0.46 | 47 ± 1 | −0.44 ± 0.05 | ≥2.8 | >0.75 | ||
250 | +0.27 | 41 ± 1 | −0.35 ± 0.05 | — | — | ||
300 | −0.15 | 30 ± 1 | −0.30 ± 0.05 | — | — | ||
Control | 50 | −0.7 | 0.52 ± 0.02 | 1.0 | −0.55 ± 0.05 | −1.1 | 0.29 |
100 | −1.0 | 0.37 ± 0.01 | −0.67 ± 0.05 | — | — | ||
150 | −2.3 | 0.18 ± 0.01 | 1.7 | −0.75 ± 0.05 | — | — | |
200 | +0.1 | 0.08 ± 0.01 | −0.50 ± 0.10 | −4.0 | 0.15 |
Parameter → | Ubias, V | ΔCmax, nF | Cref, nF | ΔUbias, V | |
---|---|---|---|---|---|
Sample | ↓ H2, ppm | ||||
No. 1 | 10 | +0.74 | 1.5 | 5.0 | −0.10 |
100 | +0.63 | 5.1 | −0.25 | ||
1000 | +0.53 | 7.8 | −0.55 | ||
No. 2 | 10 | +0.75 | 10.0 | 30.0 | −0.05 |
100 | +0.65 | 21.2 | −0.13 | ||
1000 | +0.42 | 48.6 | −0.47 | ||
Control | 10 | −1.5 | 0.20 | 1.0 | −0.25 |
100 | −1.6 | 0.31 | −0.40 | ||
1000 | −1.7 | 0.48 | −0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Litvinov, A.; Etrekova, M.; Podlepetsky, B.; Samotaev, N.; Oblov, K.; Afanasyev, A.; Ilyin, V. MOSFE-Capacitor Silicon Carbide-Based Hydrogen Gas Sensors. Sensors 2023, 23, 3760. https://doi.org/10.3390/s23073760
Litvinov A, Etrekova M, Podlepetsky B, Samotaev N, Oblov K, Afanasyev A, Ilyin V. MOSFE-Capacitor Silicon Carbide-Based Hydrogen Gas Sensors. Sensors. 2023; 23(7):3760. https://doi.org/10.3390/s23073760
Chicago/Turabian StyleLitvinov, Artur, Maya Etrekova, Boris Podlepetsky, Nikolay Samotaev, Konstantin Oblov, Alexey Afanasyev, and Vladimir Ilyin. 2023. "MOSFE-Capacitor Silicon Carbide-Based Hydrogen Gas Sensors" Sensors 23, no. 7: 3760. https://doi.org/10.3390/s23073760
APA StyleLitvinov, A., Etrekova, M., Podlepetsky, B., Samotaev, N., Oblov, K., Afanasyev, A., & Ilyin, V. (2023). MOSFE-Capacitor Silicon Carbide-Based Hydrogen Gas Sensors. Sensors, 23(7), 3760. https://doi.org/10.3390/s23073760