Estimation of Respiratory Rate during Biking with a Single Sensor Functional Near-Infrared Spectroscopy (fNIRS) System
Abstract
:1. Introduction
2. Proposed Method
2.1. Pre-Processing
2.2. RR Estimation from
2.2.1. Background
2.2.2. Extraction of Respiratory Modulations
2.2.3. Trough and Peak Detection
2.2.4. Processing of the Extracted Modulations
2.2.5. Mean-Based Fusion Method for RR Estimation
2.3. Method under Comparison
2.4. Performance Index
3. Data Collection
3.1. The Experimental Setup
3.2. The Experimental Paradigm for Data Recording
3.3. Participants
4. Results
4.1. Regulation of RR Maximum Frequency
4.2. The Performance of Proposed Method
4.3. Comparison with the Band-Pass Filtering Method
5. Discussion
5.1. The Significance of Proposed Fusion Strategy
5.2. Comparison with State-of-the-Art
5.3. Directions for Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Miao, F.; An, Q.; Liu, Z.; Chen, C.; Li, Y. Wearable Multimodal Vital Sign Monitoring Sensor With Fully Integrated Analog Front End. IEEE Sens. J. 2022, 22, 13462–13471. [Google Scholar] [CrossRef]
- De Fazio, R.; Mastronardi, V.M.; De Vittorio, M.; Visconti, P. Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview. Sensors 2023, 23, 1856. [Google Scholar] [CrossRef] [PubMed]
- Moshawrab, M.; Adda, M.; Bouzouane, A.; Ibrahim, H.; Raad, A. Smart Wearables for the Detection of Cardiovascular Diseases: A Systematic Literature Review. Sensors 2023, 23, 828. [Google Scholar] [CrossRef]
- Rathore, K.S.; Vijayarangan, P.S.P.S.; Sivaprakasam, M. A Multifunctional Network with Uncertainty Estimation and Attention-Based Knowledge Distillation to Address Practical Challenges in Respiration Rate Estimation. Sensors 2023, 23, 1599. [Google Scholar] [CrossRef] [PubMed]
- Lanatà, A.; Scilingo, E.P.; Nardini, E.; Loriga, G.; Paradiso, R.; De-Rossi, D. Comparative Evaluation of Susceptibility to Motion Artifact in Different Wearable Systems for Monitoring Respiratory Rate. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 378–386. [Google Scholar] [CrossRef]
- Alam, R.; Peden, D.B.; Lach, J.C. Wearable Respiration Monitoring: Interpretable Inference With Context and Sensor Biomarkers. IEEE J. Biomed. Health Inform. 2021, 25, 1938–1948. [Google Scholar] [CrossRef]
- Mihajlović, V.; Patki, S.; Xu, J. Noninvasive Wearable Brain Sensing. IEEE Sens. J. 2018, 18, 7860–7867. [Google Scholar] [CrossRef]
- Almajidy, R.K.; Mankodiya, K.; Abtahi, M.; Hofmann, U.G. A Newcomer’s Guide to Functional Near Infrared Spectroscopy Experiments. IEEE Rev. Biomed. Eng. 2020, 13, 292–308. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Baker, J.M.; Liu, N.; Reiss, A.L. Sensitivity of fNIRS Measurement to Head Motion: An Applied Use of Smartphones in he Lab. J. Neurosci. Methods 2015, 245, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.; Herrera, R.R.; Springett, D.N.; Weedon, B.D.; Ramirez, D.Z.M.; Holloway, C.; Ayaz, H. Neuroergonomic Assessment of Wheelchair Control Using Mobile fNIRS. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1488–1496. [Google Scholar] [CrossRef]
- Pellegrini-Laplagne, M.; Dupuy, O.; Sosner, P.; Bosquet, L. Effect of Simultaneous Exercise and Cognitive Training on Executive Functions, Baroreflex Sensitivity, and Pre-frontal Cortex Oxygenation in Healthy Older Adults: A Pilot Study. GeroScience 2023, 45, 119–140. [Google Scholar] [CrossRef]
- Germain, C.; Perrot, A.; Tomasino, C.; Bonnal, J.; Ozsancak, C.; Auzou, P.; Prieur, F. Effect of the Level of Physical Activity on Prefrontal Cortex Hemodynamics in Older Adults During Single- and Dual-Task Walking. J. Aging Phys. Act. 2022, 31, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Goenarjo, R.; Dupuy, O.; Fraser, S.; Berryman, N.; Perrochon, A.; Bosquet, L. Cardiorespiratory Fitness and Prefrontal Cortex Oxygenation During Stroop Task in Older Males. Physiol. Behav. 2021, 242, 113621. [Google Scholar] [CrossRef] [PubMed]
- Koren, Y.; Mairon, R.; Sofer, I.; Parmet, Y.; Ben-Shahar, O.; Bar-Haim, S. Vision, Cognition, and Walking Stability in Young Adults. Sci. Rep. 2022, 12, 513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Cheong, D.; Khan, A.F.; Chen, Y.; Ding, L.; Yuan, H. Correcting Physiological Noise in Whole-Head Functional Near-Infrared Spectroscopy. J. Neurosci. Methods 2021, 360, 109262. [Google Scholar] [CrossRef] [PubMed]
- Hakimi, N.; Shahbakhti, M.; Sappia, S.; Horschig, J.M.; Bronkhorst, M.; Floor-Westerdijk, M.; Colier, W.N. Estimation of Respiratory Rate from Functional Near-Infrared Spectroscopy (fNIRS): A New Perspective on Respiratory Interference. Biosensors 2022, 12, 1170. [Google Scholar] [CrossRef] [PubMed]
- Izzetoglu, M.; Holtzer, R. Effects of Processing Methods on fNIRS Signals Assessed During Active Walking Tasks in Older Adults. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.; Izzetoglu, M.; Shewokis, P.A.; Sangobowale, M.; Diaz-Arrastia, R.; Izzetoglu, K. Evaluation of fNIRS Signal Components Elicited by Cognitive and Hypercapnic Stimuli. Sci. Rep. 2021, 23457. [Google Scholar] [CrossRef]
- Tong, Y.; Lindsey, K.P.; Frederick, B. Partitioning of Physiological Noise Signals in the Brain with Concurrent Near-Infrared Spectroscopy and fMRI. J. Cereb. Blood Flow Metab. 2011, 31, 2352–2362. [Google Scholar] [CrossRef] [Green Version]
- Afkhami, R.; Walker, F.R.; Ramadan, S.; Wong, R.; Johnson, S.J. Indexing Cerebrovascular Health using Near-Infrared Spectroscopy. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Delpy, D.T.; Cope, M.; Zee, P.V.D.; Arridge, S.; Wray, S.; Wyatt, J. Estimation of Optical Pathlength Through Tissue from Direct Time of Flight Measurement. Phys. Med. Biol. 1988, 33, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sappia, M.S.; Hakimi, N.; Colier, W.N.J.M.; Horschig, J.M. Signal Quality Index: An Algorithm for Quantitative Assessment of Functional Near Infrared Spectroscopy Signal Quality. Biomed. Opt. Express 2020, 11, 6732–6754. [Google Scholar] [CrossRef] [PubMed]
- Chiarelli, A.M.; Maclin, E.L.; Fabiani, M.; Gratton, G. A Kurtosis-based Wavelet Algorithm for Motion Artifact Correction of fNIRS Data. NeuroImage 2015, 112, 128–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berntson, G.G.; Cacioppo, J.T.; Quigley, K.S. Respiratory Sinus Arrhythmia: Autonomic Origins, Physiological Mechanisms, and Psychophysiological Implications. Psychophysiology 1993, 30, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Nitzan, M.; Faib, I.; Friedman, H. Respiration-induced Changes in Tissue Blood Volume Distal to Occluded Artery, Measured by Photoplethysmography. J. Biomed. Opt. 2006, 11, 2236285. [Google Scholar] [CrossRef]
- Meredith, D.J.; Clifton, D.; Charlton, P.; Brooks, J.; Pugh, C.W.; Tarassenko, L. Photoplethysmographic Derivation of Respiratory Rate: A Review of Relevant Physiology. J. Med. Eng. Technol. 2012, 36, 638965. [Google Scholar] [CrossRef] [Green Version]
- Charlton, P.H.; Birrenkott, D.A.; Bonnici, T.; Pimentel, M.A.; Johnson, A.E.; Alastruey, J.; Clifton, D.A. Breathing Rate Estimation from the Electrocardiogram and Photoplethysmogram: A Review. IEEE Rev. Biomed. Eng. 2018, 11, 2–20. [Google Scholar] [CrossRef] [Green Version]
- Lázaro, J.; Gil, E.; Bailón, R.; Laguna, P. Deriving Respiration From the Pulse Photoplethysmographic Signal. In Proceedings of the 2011 Computing in Cardiology, Hangzhou, China, 18–21 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 713–716. [Google Scholar]
- Lindberg, L.G.; Ugnell, H.; Oberg, P.A. Monitoring of Respiratory and Heart Rates using a Fibre-optic Sensor. Med. Biol. Eng. Comput. 1992, 30, 533–537. [Google Scholar] [CrossRef]
- Milloy, M.J.; Wood, E. Normal Ranges of Heart Rate and Respiratory Rate in Children from Birth to 18 Years of Age: A Systematic Review of Observational studies. Lancet 2011, 377, 1011–1018. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Zhao, H.; Dou, S. A New Signal Decomposition to Estimate Breathing Rate and Heart Rate from Photoplethysmography Signal. Biomedal Signal Process. Control 2015, 19, 89–95. [Google Scholar] [CrossRef]
- Li, J.; Jin, J.; Chen, X.; Sun, W.; Guo, P. Comparison of Respiratory-induced Variations in Photoplethysmographic signals. Physiol. Meas. 2010, 31, 415–425. [Google Scholar] [CrossRef]
- Charlton, P.H.; Bonnici, T.; Tarassenko, L.; Alastruey, J.; Clifton, D.A.; Beale, R.; Watkinson, P.J. Extraction of Respiratory Signals From the Electrocardiogram and Photoplethysmogram: Technical and Physiological Determinants. Physiol. Meas. 2017, 38, 669–690. [Google Scholar] [CrossRef] [PubMed]
- Lühmann, A.; Li, X.; Müller, K.R.; Boas, D.A.; Yücel, M.A. Improved physiological noise regression in fNIRS: A multimodal extension of the General Linear Model using temporally embedded Canonical Correlation Analysis. NeuroImage 2020, 208, 116472. [Google Scholar] [CrossRef] [PubMed]
- Šarlija, M.; Popović, S.; Jagodić, M.; Jovanovic, T.; Ivkovic, V.; Zhang, Q.; Ćosić, K. Prediction of Task Performance From Physiological Features of Stress Resilience. IEEE J. Biomed. Health Inform. 2021, 25, 2150–2161. [Google Scholar] [CrossRef] [PubMed]
- Grassmann, M.; Vlemincx, E.; Leupoldt, A.; Mittelstädt, J.M.; Bergh, O. Respiratory Changes in Response to Cognitive Load: A Systematic Review. Neural Plast. 2016, 2016, 1–16. [Google Scholar]
- Karlen, W.; Raman, S.; Ansermino, J.M.; Dumont, G.A. Multiparameter Respiratory Rate Estimation from the Photoplethysmogram. IEEE Trans. Biomed. Eng. 2013, 60, 1946–1953. [Google Scholar] [CrossRef]
Subject | BMI | Age | Blood Pressure Status | Sex |
---|---|---|---|---|
1 | 23.4 | 37 | Hypotension | Female |
2 | 22.6 | 37 | Hypotension | Male |
3 | 20.4 | 24 | Normotension | Male |
4 | 18.6 | 33 | Normotension | Female |
5 | 25.6 | 22 | Normotension | Male |
6 | 19.3 | 22 | Normotension | Male |
7 | 19.8 | 26 | Normotension | Male |
8 | 21.4 | 31 | Hypotension | Female |
9 | 24.2 | 27 | Hypotension | Female |
10 | 22.3 | 24 | Normotension | Female |
11 | 26.8 | 24 | Normotension | Male |
12 | 25.4 | 32 | Normotension | Female |
13 | 23.8 | 22 | Normotension | Male |
14 | 26.2 | 28 | Normotension | Male |
15 | 23.4 | 23 | Normotension | Male |
16 | 21.8 | 22 | Normotension | Male |
17 | 26.7 | 24 | Normotension | Female |
18 | 22.9 | 22 | Normotension | Female |
19 | 20.8 | 25 | Normotension | Female |
20 | 21.5 | 24 | Normotension | Female |
21 | 26.4 | 24 | Normotension | Male |
22 | 24.6 | 33 | Normotension | Female |
Subject | RAM | RFM I | RFM II | RIM I | RMI II | Fusion |
---|---|---|---|---|---|---|
1 | 1.45 | 1.30 | 1.46 | 2.17 | 2.23 | 1.05 |
2 | 8.54 | 8.72 | 6.30 | 7.79 | 7.17 | 6.17 |
3 | 4.85 | 3.72 | 6.91 | 6.27 | 6.9 | 3.83 |
4 | 5.62 | 4.01 | 3.27 | 4.95 | 5.23 | 3.08 |
5 | 3.29 | 2.53 | 2.75 | 2.53 | 3.25 | 1.35 |
6 | 6.48 | 7.78 | 8.50 | 7.60 | 7.77 | 5.35 |
7 | 6.51 | 6.76 | 5.15 | 5.49 | 7.02 | 5.11 |
8 | 3.09 | 3.25 | 4.91 | 5.66 | 3.89 | 3.75 |
9 | 5.96 | 3.99 | 10.96 | 9.16 | 8.07 | 5.10 |
10 | 8.66 | 5.38 | 5.18 | 7.47 | 7.68 | 5.00 |
11 | 5.98 | 4.31 | 6.21 | 6.93 | 5.43 | 4.31 |
12 | 5.47 | 3.61 | 5.01 | 5.05 | 3.9 | 2.81 |
13 | 4.97 | 3.09 | 6.09 | 6.47 | 5.31 | 3.35 |
14 | 7.62 | 6.82 | 5.63 | 3.98 | 3.92 | 4.99 |
15 | 5.87 | 7.30 | 5.62 | 3.38 | 5.86 | 3.98 |
16 | 5.73 | 3.67 | 2.88 | 2.54 | 3.00 | 2.00 |
17 | 2.87 | 3.56 | 5.84 | 8.36 | 6.98 | 3.61 |
18 | 5.34 | 4.07 | 2.40 | 3.73 | 3.84 | 3.13 |
19 | 4.73 | 4.03 | 7.26 | 6.98 | 5.09 | 3.47 |
20 | 3.71 | 3.69 | 6.85 | 8.59 | 5.31 | 3.67 |
21 | 2.72 | 2.82 | 4.87 | 4.36 | 3.60 | 2.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahbakhti, M.; Hakimi, N.; Horschig, J.M.; Floor-Westerdijk, M.; Claassen, J.; Colier, W.N.J.M. Estimation of Respiratory Rate during Biking with a Single Sensor Functional Near-Infrared Spectroscopy (fNIRS) System. Sensors 2023, 23, 3632. https://doi.org/10.3390/s23073632
Shahbakhti M, Hakimi N, Horschig JM, Floor-Westerdijk M, Claassen J, Colier WNJM. Estimation of Respiratory Rate during Biking with a Single Sensor Functional Near-Infrared Spectroscopy (fNIRS) System. Sensors. 2023; 23(7):3632. https://doi.org/10.3390/s23073632
Chicago/Turabian StyleShahbakhti, Mohammad, Naser Hakimi, Jörn M. Horschig, Marianne Floor-Westerdijk, Jurgen Claassen, and Willy N. J. M. Colier. 2023. "Estimation of Respiratory Rate during Biking with a Single Sensor Functional Near-Infrared Spectroscopy (fNIRS) System" Sensors 23, no. 7: 3632. https://doi.org/10.3390/s23073632