Inferring Causal Factors of Core Affect Dynamics on Social Participation through the Lens of the Observer
Abstract
:1. Introduction
- Based on the available affect annotations in the valence-arousal space and building on some preliminary work [22], we phenomenologically model core affect dynamics, a stochastic trajectory, as an Ornstein–Uhlenbeck (OU) process and identify its relevant parameters; these can be considered as descriptors of the individual’s affect tendency;
- We then gauge the cause/effect relationship between such dynamics and social personality, its extent and the direction of such effect. To such end, we use the deconfounder method [23]. The method replaces potential unobserved confounders with an inferred latent variable; the latter is subsequently used to perform causal inference on social participation labels.
- Is the emulated core affect dynamics consistent with the participant’s affect dynamics as perceived by the human rater? (RQ1)
- Is the emulated social behaviour judgement causally related to the affect dynamics and reliable with respect to the human rater evaluation? (RQ2)
- Are the emulator results to some extent suitable to be exploited in subsequent machine-oriented analyses? (RQ3)
2. Background and Motivation
3. Overview of the Approach
3.1. Observed Affect Dynamics: Modelling and Identification
- B: the parameter controls the strength of the “attraction” towards U. For a two-dimensional trajectory, it is defined as a matrix:and represent the drift of the process towards the steady state U in the arousal and valence dimension, respectively. The off-diagonal elements describe the cross-correlation between drift in both dimensions. Higher values of or will magnify the difference between the actual state and or , respectively; as a result, this will produce a faster change towards U for that specific dimension. For high cross-correlation values, increasing value of the drift in one dimension will produce increasing values on the other. This will cause more curved trajectories towards the attractor U. For these reasons, the parameter B is often referred to as the dampening force or centralising tendency. It is surmised that the strength of this force reflects the regulatory processes devised to keep a person’s core affect under control.
- U: for a two-dimensional trajectory, this parameter has the shape of a 2D vector. Intuitively, it operates as an anchor describing the baseline emotional behaviour of a subject, an affective “home base” or comfort zone of an individual. By constantly pulling core affect back to its home base, the attractor keeps the system in balance, creating an emergent coherence around it;
- D: this parameter denotes a correlation matrix controlling the variances and covariances of the 2 driving white noise processes . Higher values of variances/covariances will produce noisier/more anisotropic core affect trajectories.
3.2. From Observed Affect Dynamics to Social Participation Labelling: Unveiling Causal Effects
- Fit a good factor model of assigned causes able to capture the joint distribution , where is a local factor;
- Use the model to infer the latent variable for each individual ;
- Perform causal inference by fitting an outcome model adjusted for confounding by conditioning on the inferred factor model latent variables .
4. Methods
4.1. Participants
4.2. Apparatus
4.3. Procedure
4.4. Data Analysis
4.4.1. OU-SSM Parameters Inference and Validation
4.4.2. Causal Analysis
5. Results
5.1. OU-SSM Results
Discussion
5.2. Causal Analysis Results
Discussion
6. General Discussion
6.1. Findings and Implications
6.2. Limitations
6.3. Research Directions
7. Conclusions
- The core affect dynamics generated by the emulator is consistent with the participant’s affect dynamics as perceived by the human rater;
- The phenomenological model behind the emulator overall reliably captures salient causal aspects concerning the relationship between core affect and interpersonal behaviour involved in social judgement;
- The emulator in its present form, when straightforwardly embedded as a component of the machine learning pipeline, exhibits an interesting performance trend that is in line with the theoretical expectations, namely that a causal-based model should perform better than a correlational one in dealing with out-of-sample data. The difference in performance, however, that we have reported with the limited out-of-sample test set available does not allow for a conclusive statement in this regard, at least in terms of classical statistical significance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OU | Ornstein–Uhlenbeck |
OU-SSM | Ornstein–Uhlenbeck State-Space Model |
BLR | Bayesian Linear Regression |
ADVI | Automatic Differentiation Variational Inference |
ATE | Average Treatment Effect |
SUTVA | Stable Unit Treatment Values Assumption |
IRR | Inter-Rater Reliability |
ICC | Intra-Class Correlation |
RA | Recurrence Analysis |
CRA | Cross-Recurrence Analysis |
CRP | Cross-Recurrence Plot |
DET | Determinism |
LAM | Laminarity |
MDL | Maximum diagonal line length |
PPCA | Probabilistic Principal Component Analysis |
PPC | Posterior Predictive Checks |
PLL | average Predictive Log-Likelihood |
HDI | Highest Density Interval |
ES | Experience Sampling |
References
- Ma, H.; Yarosh, S. A Review of Affective Computing Research Based on Function-Component-Representation Framework. IEEE Trans. Affect. Comput. 2021. [Google Scholar] [CrossRef]
- Gratch, J. The field of Affective Computing: An interdisciplinary perspective. Trans. Jpn. Soc. Artif. Intell. 2021, 36, 13. [Google Scholar]
- D’Mello, S.; Kappas, A.; Gratch, J. The Affective Computing Approach to Affect Measurement. Emot. Rev. 2018, 10, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Salam, H.; Manoranjan, V.; Jiang, J.; Celiktutan, O. Learning Personalised Models for Automatic Self-Reported Personality Recognition. In Understanding Social Behavior in Dyadic and Small Group Interactions, Proceedings of the Machine Learning Research, Baltimore, MD, USA, 17–23 July 2022; Palmero, C., Jacques, J.C.S., Jr., Clapés, A., Guyon, I., Tu, W.W., Moeslund, T.B., Escalera, S., Eds.; JMLR: Cambridge, MA, USA, 2022; Volume 173, pp. 53–73. [Google Scholar]
- Erkoç, Z.; Demirci, S.; Sonlu, S.; Güdükbay, U. Skeleton-based Personality Recognition using Laban Movement Analysis. In Understanding Social Behavior in Dyadic and Small Group Interactions, Proceedings of the Machine Learning Research, Baltimore, MD, USA, 17–23 July 2022; JMLR: Cambridge, MA, USA, 2022; pp. 74–87. [Google Scholar]
- Cuculo, V.; D’Amelio, A.; Lanzarotti, R.; Boccignone, G. Personality Gaze Patterns Unveiled via Automatic Relevance Determination. In Software Technologies: Applications and Foundations; Springer International Publishing: Cham, Switzerland, 2018; pp. 171–184. [Google Scholar]
- Palmero, C.; Jacques Junior, J.C.S.; Clapés, A.; Guyon, I.; Tu, W.W.; Moeslund, T.B.; Escalera, S. Understanding Social Behavior in Dyadic and Small Group Interactions: Preface. In Understanding Social Behavior in Dyadic and Small Group Interactions, Proceedings of the Machine Learning Research, Baltimore, MD, USA, 17–23 July 2022; Palmero, C., Jacques, J.C.S., Jr., Clapés, A., Guyon, I., Tu, W.W., Moeslund, T.B., Escalera, S., Eds.; JMLR: Cambridge, MA, USA, 2022; Volume 173, pp. 1–3. [Google Scholar]
- Palmero, C.; Barquero, G.; Junior, J.C.J.; Clapés, A.; Núnez, J.; Curto, D.; Smeureanu, S.; Selva, J.; Zhang, Z.; Saeteros, D.; et al. Chalearn LAP challenges on self-reported personality recognition and non-verbal behavior forecasting during social dyadic interactions: Dataset, design, and results. In Understanding Social Behavior in Dyadic and Small Group Interactions, Proceedings of the Machine Learning Research, Baltimore, MD, USA, 17–23 July 2022; JMLR: Cambridge, MA, USA, 2022; pp. 4–52. [Google Scholar]
- Tuyen, N.T.V.; Celiktutan, O. Context-Aware Human Behaviour Forecasting in Dyadic Interactions. In Understanding Social Behavior in Dyadic and Small Group Interactions, Proceedings of the Machine Learning Research, Baltimore, MD, USA, 17–23 July 2022; JMLR: Cambridge, MA, USA, 2022; pp. 88–106. [Google Scholar]
- Barquero, G.; Núnez, J.; Escalera, S.; Xu, Z.; Tu, W.W.; Guyon, I.; Palmero, C. Didn’t see that coming: A survey on non-verbal social human behavior forecasting. In Understanding Social Behavior in Dyadic and Small Group Interactions, Proceedings of the Machine Learning Research, Baltimore, MD, USA, 17–23 July 2022; JMLR: Cambridge, MA, USA, 2022; pp. 139–178. [Google Scholar]
- Bokadia, H.; Rai, R.; Torres, E.B. Digitized ADOS: Social interactions beyond the limits of the naked eye. J. Pers. Med. 2020, 10, 159. [Google Scholar] [CrossRef] [PubMed]
- Boccignone, G.; Cuculo, V.; D’Amelio, A.; Grossi, G.; Lanzarotti, R. Give ear to my face: Modelling multimodal attention to social interactions. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018; pp. 331–345. [Google Scholar]
- Eddine Bekhouche, S.; Dornaika, F.; Ouafi, A.; Taleb-Ahmed, A. Personality traits and job candidate screening via analyzing facial videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 10–13. [Google Scholar]
- Gorbova, J.; Lusi, I.; Litvin, A.; Anbarjafari, G. Automated screening of job candidate based on multimodal video processing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 29–35. [Google Scholar]
- Su, Y.S.; Suen, H.Y.; Hung, K.E. Predicting behavioral competencies automatically from facial expressions in real-time video-recorded interviews. J. Real-Time Image Process. 2021, 18, 1011–1021. [Google Scholar] [CrossRef]
- Junior, J.C.J.; Güçlütürk, Y.; Pérez, M.; Güçlü, U.; Andujar, C.; Baró, X.; Escalante, H.J.; Guyon, I.; Van Gerven, M.A.; Van Lier, R.; et al. First impressions: A survey on vision-based apparent personality trait analysis. IEEE Trans. Affect. Comput. 2019, 13, 75–95. [Google Scholar] [CrossRef] [Green Version]
- Barrett, L.F. Bridging Token Identity Theory and Supervenience Theory Through Psychological Construction. Psychol. Inq. 2011, 22, 115–127. [Google Scholar] [CrossRef]
- Quigley, K.S.; Lindquist, K.A.; Barrett, L.F. Inducing and measuring emotion and affect: Tips, tricks, and secrets. In Handbook of Research Methods in Social and Personality Psychology; Reis, H.T., Judd, C.M., Eds.; Cambridge University Press: New York, NY, USA, 2014; pp. 220–252. [Google Scholar]
- Barrett, L.F.; Adolphs, R.; Marsella, S.; Martinez, A.M.; Pollak, S.D. Emotional expressions reconsidered: Challenges to inferring emotion from human facial movements. Psychol. Sci. Public Interest 2019, 20, 1–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azari, B.; Westlin, C.; Satpute, A.B.; Hutchinson, J.B.; Kragel, P.A.; Hoemann, K.; Khan, Z.; Wormwood, J.B.; Quigley, K.S.; Erdogmus, D.; et al. Comparing supervised and unsupervised approaches to emotion categorization in the human brain, body, and subjective experience. Sci. Rep. 2020, 10, 20284. [Google Scholar] [CrossRef] [PubMed]
- Insua, D.; Ruggeri, F.; Wiper, M. Bayesian Analysis of Stochastic Process Models; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Boccignone, G.; Cuculo, V.; D’Amelio, A.; Lanzarotti, R. Social traits from stochastic paths in the core affect space. In Proceedings of the 13th EAI International Conference on Pervasive Computing Technologies for Healthcare, Trento, Italy, 20–23 May 2019; pp. 314–319. [Google Scholar]
- Wang, Y.; Blei, D.M. The blessings of multiple causes. J. Am. Stat. Assoc. 2019, 114, 1574–1596. [Google Scholar] [CrossRef] [Green Version]
- Ringeval, F.; Sonderegger, A.; Sauer, J.; Lalanne, D. Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions. In Proceedings of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, Shanghai, China, 22–26 April 2013; IEEE: New York, NY, USA, 2013; pp. 1–8. [Google Scholar]
- Ekman, P.; Cordaro, D. What is meant by calling emotions basic. Emot. Rev. 2011, 3, 364–370. [Google Scholar] [CrossRef]
- Barrett, L.F.; Satpute, A.B. Historical pitfalls and new directions in the neuroscience of emotion. Neurosci. Lett. 2019, 693, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Barrett, L.F. How Emotions are Made: The Secret Life of the Brain; Houghton Mifflin Harcourt: New York, NY, USA, 2017. [Google Scholar]
- Mesquita, B. Between Us: How Cultures Create Emotions; National Geographic Books: Washington, DC, USA, 2022. [Google Scholar]
- Barrett, L.F. Categories and their role in the science of emotion. Psychol. Inq. 2017, 28, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Seth, A.K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 2013, 17, 565–573. [Google Scholar] [CrossRef]
- Seth, A.K.; Friston, K.J. Active interoceptive inference and the emotional brain. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20160007. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.A. Core affect and the psychological construction of emotion. Psychol. Rev. 2003, 110, 145. [Google Scholar] [CrossRef]
- Barrett, L.F.; Bliss-Moreau, E. Affect as a psychological primitive. Adv. Exp. Soc. Psychol. 2009, 41, 167–218. [Google Scholar] [PubMed] [Green Version]
- Anderson, D.J.; Adolphs, R. A framework for studying emotions across species. Cell 2014, 157, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Barrett, L.F.; Russell, J.A. The Psychological Construction of Emotion; Guilford Publications: New York, NY, USA, 2014. [Google Scholar]
- Na, J.; Kitayama, S. Spontaneous trait inference is culture-specific: Behavioral and neural evidence. Psychol. Sci. 2011, 22, 1025–1032. [Google Scholar] [CrossRef]
- Goodman, N.D.; Frank, M.C. Pragmatic language interpretation as probabilistic inference. Trends Cogn. Sci. 2016, 20, 818–829. [Google Scholar] [CrossRef]
- Goodman, N.D.; Stuhlmüller, A. Knowledge and implicature: Modeling language understanding as social cognition. Top. Cogn. Sci. 2013, 5, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Bursic, S. On Wiring Emotion to Words: A Bayesian Model. Ph.D. Thesis, University of Milan, Milan, Italy, 2022. [Google Scholar]
- Fischer, A.H.; Manstead, A.S. Social functions of emotion. Handb. Emot. 2008, 3, 456–468. [Google Scholar]
- Solomon, R.C. A Passion for Justice: Emotions and the Origins of the Social Contract; Addison-Wesley: Boston, MA, USA, 1990. [Google Scholar]
- Anderson, C.; Keltner, D. The role of empathy in the formation and maintenance of social bonds. Behav. Brain Sci. 2002, 25, 21. [Google Scholar] [CrossRef]
- Brandão, Â.C.C. A Neurodevelopmental Approach to the Phylogeny and Ontogeny of Primate Personality. Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portugal, 2021. [Google Scholar]
- Lutz, C.; White, G.M. The anthropology of emotions. Annu. Rev. Anthropol. 1986, 15, 405–436. [Google Scholar] [CrossRef]
- Hareli, S.; Hess, U. What emotional reactions can tell us about the nature of others: An appraisal perspective on person perception. Cogn. Emot. 2010, 24, 128–140. [Google Scholar] [CrossRef]
- Tiedens, L.Z. Anger and advancement versus sadness and subjugation: The effect of negative emotion expressions on social status conferral. J. Personal. Soc. Psychol. 2001, 80, 86. [Google Scholar] [CrossRef]
- Erk, K. The Probabilistic Turn in Semantics and Pragmatics. Annu. Rev. Linguist. 2021, 8, 101–121. [Google Scholar] [CrossRef]
- Boccignone, G.; Conte, D.; Cuculo, V.; D’Amelio, A.; Grossi, G.; Lanzarotti, R. Deep Construction of an Affective Latent Space via Multimodal Enactment. IEEE Trans. Cogn. Dev. Syst. 2018, 10, 865–880. [Google Scholar] [CrossRef] [Green Version]
- Mesquita, B.; Frijda, N.H. Cultural variations in emotions: A review. Psychol. Bull. 1992, 112, 179. [Google Scholar] [CrossRef]
- Boiger, M.; Ceulemans, E.; De Leersnyder, J.; Uchida, Y.; Norasakkunkit, V.; Mesquita, B. Beyond essentialism: Cultural differences in emotions revisited. Emotion 2018, 18, 1142. [Google Scholar] [CrossRef]
- Barrett, L.F.; Mesquita, B.; Ochsner, K.N.; Gross, J.J. The experience of emotion. Annu. Rev. Psychol. 2007, 58, 373–403. [Google Scholar] [CrossRef] [Green Version]
- Timmermans, T.; Van Mechelen, I.; Kuppens, P. The relationship between individual differences in intraindividual variability in core affect and interpersonal behaviour. Eur. J. Pers. 2010, 24, 623–638. [Google Scholar] [CrossRef] [Green Version]
- Larsen, R.J.; Ketelaar, T. Personality and susceptibility to positive and negative emotional states. J. Pers. Soc. Psychol. 1991, 61, 132. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.L.; Miao, F.F.; Seppala, E.; Fung, H.H.; Yeung, D.Y. Influence and adjustment goals: Sources of cultural differences in ideal affect. J. Pers. Soc. Psychol. 2007, 92, 1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galinsky, A.D.; Gruenfeld, D.H.; Magee, J.C. From power to action. J. Pers. Soc. Psychol. 2003, 85, 453. [Google Scholar] [CrossRef]
- Kuppens, P.; Van Mechelen, I.; Nezlek, J.B.; Dossche, D.; Timmermans, T. Individual differences in core affect variability and their relationship to personality and psychological adjustment. Emotion 2007, 7, 262. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.; FitzGerald, T.; Rigoli, F.; Schwartenbeck, P.; Pezzulo, G. Active inference: A process theory. Neural Comput. 2017, 29, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Hesp, C.; Smith, R.; Parr, T.; Allen, M.; Friston, K.J.; Ramstead, M.J. Deeply felt affect: The emergence of valence in deep active inference. Neural Comput. 2021, 33, 398–446. [Google Scholar] [CrossRef]
- Kilner, J.M.; Friston, K.J.; Frith, C.D. The mirror-neuron system: A Bayesian perspective. Neuroreport 2007, 18, 619–623. [Google Scholar] [CrossRef]
- Kuppens, P.; Oravecz, Z.; Tuerlinckx, F. Feelings change: Accounting for individual differences in the temporal dynamics of affect. J. Pers. Soc. Psychol. 2010, 99, 1042. [Google Scholar] [CrossRef] [Green Version]
- Van Kampen, N. Stochastic Processes in Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Oud, J.H.; Singer, H. Continuous time modeling of panel data: SEM versus filter techniques. Stat. Neerl. 2008, 62, 4–28. [Google Scholar] [CrossRef]
- Uhlenbeck, G.E.; Ornstein, L.S. On the theory of the Brownian motion. Phys. Rev. 1930, 36, 823. [Google Scholar] [CrossRef]
- Oravecz, Z.; Tuerlinckx, F.; Vandekerckhove, J. A hierarchical latent stochastic differential equation model for affective dynamics. Psychol. Methods 2011, 16, 468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearl, J. Causality: Models, Reasoning and Inference; Cambridge University Press: Cambridge, UK, 2000; Volume 19. [Google Scholar]
- Imbens, G.W.; Rubin, D.B. Causal Inference in Statistics, Social, and Biomedical Sciences; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Borkenau, P.; Liebler, A. The cross-modal consistency of personality: Inferring strangers’ traits from visual or acoustic information. J. Res. Pers. 1992, 26, 183–204. [Google Scholar] [CrossRef]
- Splawa-Neyman, J.; Dabrowska, D.M.; Speed, T. On the application of probability theory to agricultural experiments. Essay on principles—Section 9. In Statistical Science; Institute of Mathematical Statistics: Beachwood, OH, USA, 1990; pp. 465–472. [Google Scholar]
- Imai, K.; Jiang, Z. Comment: The challenges of multiple causes. J. Am. Stat. Assoc. 2019, 114, 1605–1610. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef] [PubMed]
- McKeown, G.; Valstar, M.; Cowie, R.; Pantic, M.; Schroder, M. The SEMAINE database: Annotated multimodal records of emotionally colored conversations between a person and a limited agent. IEEE Trans. Affect. Comput. 2011, 3, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.; Watson, W.H. The effects of a normative intervention on group decision-making performance. Hum. Relat. 1970, 23, 299–317. [Google Scholar] [CrossRef]
- Grimm, M.; Kroschel, K. Evaluation of natural emotions using self assessment manikins. In Proceedings of the Automatic Speech Recognition and Understanding, 2005 IEEE Workshop, Cancun, Mexico, 27 November–1 December 2005; IEEE: New York, NY, USA, 2005; pp. 381–385. [Google Scholar]
- Richardson, M.J.; Dale, R.; Marsh, K.L. Complex dynamical systems in social and personality psychology: Theory, modeling, and analysis. In Handbook of Research Methods in Social and Personality Psychology; Reis, H.T., Judd, C.M., Eds.; Cambridge University Press: New York, NY, USA, 2014; pp. 253–282. [Google Scholar]
- Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Hallgren, K.A. Computing inter-rater reliability for observational data: An overview and tutorial. Tutor. Quant. Methods Psychol. 2012, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420. [Google Scholar] [CrossRef]
- Bartko, J.J. The intraclass correlation coefficient as a measure of reliability. Psychol. Rep. 1966, 19, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Kruschke, J.K. Doing Bayesian Data Analysis: A Tutorial with R and BUGS, 1st ed.; Academic Press, Inc.: Orlando, FL, USA, 2010. [Google Scholar]
- Cicchetti, D.V. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol. Assess. 1994, 6, 284. [Google Scholar] [CrossRef]
- Abele, A.E.; Ellemers, N.; Fiske, S.T.; Koch, A.; Yzerbyt, V. Navigating the social world: Toward an integrated framework for evaluating self, individuals, and groups. Psychol. Rev. 2021, 128, 290. [Google Scholar] [CrossRef] [PubMed]
- Bakan, D. The Duality of Human Existence: An Essay on Psychology and Religion; Rand McNally: Chicago, IL, USA, 1966. [Google Scholar]
- Wiggins, J.S. Agency and communion as conceptual coordinates for the understanding and measurement of interpersonal behavior. In Thinking Clearly About Psychology: Essays in Honor of Paul Everett Meehl; Cicchetti, D.E., Grove, W.M., Eds.; University of Minnesota Press: Minneapolis, MN, USA, 1991; pp. 89–113. [Google Scholar]
- Abele, A.E.; Wojciszke, B. Agency and communion from the perspective of self versus others. J. Pers. Soc. Psychol. 2007, 93, 751. [Google Scholar] [CrossRef] [Green Version]
- D’Amour, A. Comment: Reflections on the deconfounder. J. Am. Stat. Assoc. 2019, 114, 1597–1601. [Google Scholar] [CrossRef] [Green Version]
- Ogburn, E.L.; Shpitser, I.; Tchetgen, E.J.T. Comment on “blessings of multiple causes”. J. Am. Stat. Assoc. 2019, 114, 1611–1615. [Google Scholar] [CrossRef] [Green Version]
- Athey, S.; Imbens, G.W.; Pollmann, M. Comment on: “the blessings of multiple causes” by Yixin Wang and David M. Blei. J. Am. Stat. Assoc. 2019, 114, 1602–1604. [Google Scholar] [CrossRef]
- Wang, Y.; Blei, D.M. The blessings of multiple causes: Rejoinder. J. Am. Stat. Assoc. 2019, 114, 1616–1619. [Google Scholar] [CrossRef]
- Wang, Y.; Blei, D.M. Towards clarifying the theory of the deconfounder. arXiv 2020, arXiv:2003.04948. [Google Scholar]
- Kruskal, J.B. Rank, decomposition, and uniqueness for 3-way and N-way arrays. In Multiway Data Analysis; North-Holland Publishing Company: Amsterdam, The Netherlands, 1989; pp. 7–18. [Google Scholar]
- Allman, E.S.; Matias, C.; Rhodes, J.A. Identifiability of parameters in latent structure models with many observed variables. Ann. Stat. 2009, 37, 3099–3132. [Google Scholar] [CrossRef]
- Thelen, E.; Smith, L.B. Dynamic Systems Theories; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Wichers, M.; Wigman, J.; Myin-Germeys, I. Micro-level affect dynamics in psychopathology viewed from complex dynamical system theory. Emot. Rev. 2015, 7, 362–367. [Google Scholar] [CrossRef]
- Boccignone, G.; Cuculo, V.; D’Amelio, A.; Grossi, G.; Lanzarotti, R. On gaze deployment to audio-visual cues of social interactions. IEEE Access 2020, 8, 161630–161654. [Google Scholar] [CrossRef]
- D’Amelio, A.; Boccignone, G. Gazing at Social Interactions Between Foraging and Decision Theory. Front. Neurorobotics 2021, 15, 639999. [Google Scholar] [CrossRef] [PubMed]
- de Melo, C.M.; Torralba, A.; Guibas, L.; DiCarlo, J.; Chellappa, R.; Hodgins, J. Next-generation deep learning based on simulators and synthetic data. Trends Cogn. Sci. 2022, 26, 174–187. [Google Scholar] [CrossRef]
- Koch, B.; Sainburg, T.; Geraldo, P.; Jiang, S.; Sun, Y.; Foster, J.G. Deep Learning of Potential Outcomes. arXiv 2021, arXiv:2110.04442. [Google Scholar]
- Guo, R.; Cheng, L.; Li, J.; Hahn, P.R.; Liu, H. A survey of learning causality with data: Problems and methods. ACM Comput. Surv. 2020, 53, 1–37. [Google Scholar] [CrossRef]
- Moraffah, R.; Sheth, P.; Karami, M.; Bhattacharya, A.; Wang, Q.; Tahir, A.; Raglin, A.; Liu, H. Causal inference for time series analysis: Problems, methods and evaluation. Knowl. Inf. Syst. 2021, 63, 3041–3085. [Google Scholar] [CrossRef]
- Oh, G.; Jeong, E.; Lim, S. Causal affect prediction model using a past facial image sequence. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 3550–3556. [Google Scholar]
- Chen, Y.; Chen, D.; Wang, T.; Wang, Y.; Liang, Y. Causal intervention for subject-deconfounded facial action unit recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2022; Volume 36, pp. 374–382. [Google Scholar]
- Cao, S.; Qu, L.; Tian, L. Causal Relationships Between Emotions and Dialog Acts. In Proceedings of the 2021 9th International Conference on Affective Computing and Intelligent Interaction (ACII), Nara, Japan, 28 September–1 October 2021; IEEE: New York, NY, USA, 2021; pp. 1–8. [Google Scholar]
- Sarsenbayeva, Z.; Marini, G.; van Berkel, N.; Luo, C.; Jiang, W.; Yang, K.; Wadley, G.; Dingler, T.; Kostakos, V.; Goncalves, J. Does smartphone use drive our emotions or vice versa? A causal analysis. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–15. [Google Scholar]
- Puviani, L.; Rama, S.; Vitetta, G.M. A mathematical description of emotional processes and its potential applications to affective computing. IEEE Trans. Affect. Comput. 2021, 12, 692–706. [Google Scholar] [CrossRef]
- Müller, L.; Shadaydeh, M.; Thümmel, M.; Kessler, T.; Schneider, D.; Denzler, J. Causal inference in nonverbal dyadic communication with relevant interval selection and granger causality. arXiv 2018, arXiv:1810.12171. [Google Scholar]
- Miller, L.C.; Shaikh, S.J.; Jeong, D.C.; Wang, L.; Gillig, T.K.; Godoy, C.G.; Appleby, P.R.; Corsbie-Massay, C.L.; Marsella, S.; Christensen, J.L.; et al. Causal Inference in Generalizable Environments: Systematic Representative Design. Psychol. Inq. 2019, 30, 173–202. [Google Scholar] [CrossRef] [PubMed]
- Robins, R.W.; Hendin, H.M.; Trzesniewski, K.H. Measuring global self-esteem: Construct validation of a single-item measure and the Rosenberg Self-Esteem Scale. Pers. Soc. Psychol. Bull. 2001, 27, 151–161. [Google Scholar] [CrossRef]
- Faelens, L.; Hoorelbeke, K.; Soenens, B.; Van Gaeveren, K.; De Marez, L.; De Raedt, R.; Koster, E.H. Social media use and well-being: A prospective experience-sampling study. Comput. Hum. Behav. 2021, 114, 106510. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, J.; He, Y.; Zhang, X.; Xu, R.; Yu, H.; Cui, P. Towards out-of-distribution generalization: A survey. arXiv 2021, arXiv:2108.13624. [Google Scholar]
- Wrzus, C.; Neubauer, A.B. Ecological Momentary Assessment: A Meta-Analysis on Designs, Samples, and Compliance Across Research Fields. Assessment 2022, 1–21. [Google Scholar] [CrossRef]
- Reis, H.T.; Gable, S.L.; Maniaci, M.R. Methods for Studying Everyday Experience in Its Natural Context. In Handbook of Research Methods in Social and Personality Psychology; Reis, H.T., Judd, C.M., Eds.; Cambridge University Press: New York, NY, USA, 2014; pp. 220–252. [Google Scholar]
- Conner, T.S.; Tennen, H.; Fleeson, W.; Barrett, L.F. Experience sampling methods: A modern idiographic approach to personality research. Soc. Pers. Psychol. Compass 2009, 3, 292–313. [Google Scholar] [CrossRef] [PubMed]
- Struminskaya, B.; Lugtig, P.; Keusch, F.; Höhne, J.K. Augmenting surveys with data from sensors and apps: Opportunities and challenges. Soc. Sci. Comput. Rev. 2020. [Google Scholar] [CrossRef]
- Christensen, T.; Barrett, L.; Bliss-Moreau, E.; Lebo, K.; Kaschub, C. A Practical Guide to Experience-Sampling Procedures. J. Happiness Stud. 2003, 4, 53–78. [Google Scholar] [CrossRef]
- Barrett, L.F.; Barrett, D.J. An introduction to computerized experience sampling in psychology. Soc. Sci. Comput. Rev. 2001, 19, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Van Berkel, N.; Ferreira, D.; Kostakos, V. The experience sampling method on mobile devices. ACM Comput. Surv. 2017, 50, 93. [Google Scholar] [CrossRef]
- Cherubini, M.; Oliver, N. A refined experience sampling method to capture mobile user experience. In Proceedings of the International Workshop of Mobile User Experience Research, CHI’2009, Boston, MA, USA, 4–9 April 2009; pp. 1–12. [Google Scholar]
- Bianco, S.; Celona, L.; Ciocca, G.; Marelli, D.; Napoletano, P.; Yu, S.; Schettini, R. A smart mirror for emotion monitoring in home environments. Sensors 2021, 21, 7453. [Google Scholar] [CrossRef]
- Bianco, S.; Celona, L.; Napoletano, P. Visual-based sentiment logging in magic smart mirrors. In Proceedings of the 2018 IEEE 8th International Conference on Consumer Electronics-Berlin (ICCE-Berlin), Berlin, Germany, 2–5 September 2018; IEEE: New York, NY, USA, 2018; pp. 1–4. [Google Scholar]
- Ghosh, S.; Ganguly, N.; Mitra, B.; De, P. Designing an experience sampling method for smartphone based emotion detection. IEEE Trans. Affect. Comput. 2019, 12, 913–927. [Google Scholar] [CrossRef] [Green Version]
- Hoemann, K.; Khan, Z.; Feldman, M.J.; Nielson, C.; Devlin, M.; Dy, J.; Barrett, L.F.; Wormwood, J.B.; Quigley, K.S. Context-aware experience sampling reveals the scale of variation in affective experience. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Jayawickreme, E.; Zachry, C.E.; Fleeson, W. Whole trait theory: An integrative approach to examining personality structure and process. Pers. Individ. Differ. 2019, 136, 2–11. [Google Scholar] [CrossRef]
- Joosse, M.; Lohse, M.; Perez, J.G.; Evers, V. What you do is who you are: The role of task context in perceived social robot personality. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; IEEE: New York, NY, USA, 2013; pp. 2134–2139. [Google Scholar]
- Lee, K.M.; Peng, W.; Jin, S.A.; Yan, C. Can robots manifest personality?: An empirical test of personality recognition, social responses, and social presence in human–robot interaction. J. Commun. 2006, 56, 754–772. [Google Scholar] [CrossRef]
- Isbister, K.; Nass, C. Consistency of personality in interactive characters: Verbal cues, non-verbal cues, and user characteristics. Int. J. Hum.-Comput. Stud. 2000, 53, 251–267. [Google Scholar] [CrossRef] [Green Version]
- Kaya, H.; Salah, A.A. Multimodal personality trait analysis for explainable modeling of job interview decisions. In Explainable and Interpretable Models in Computer Vision and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2018; pp. 255–275. [Google Scholar]
- Pearl, J. The seven tools of causal inference, with reflections on machine learning. Commun. ACM 2019, 62, 54–60. [Google Scholar] [CrossRef] [Green Version]
Subject ID | DET | LAM | MDL | |||
---|---|---|---|---|---|---|
OU | Random | OU | Random | OU | Random | |
P16 | 0.965 ± 0.006 | 0.013 ± 0.005 | 0.965 ± 0.005 | 0.014 ± 0.005 | 67 ± 10 | 2 ± 0 |
P17 | 0.968 ± 0.005 | 0.006 ± 0.005 | 0.970 ± 0.004 | 0.006 ± 0.006 | 96 ± 39 | 2 ± 0 |
P19 | 0.969 ± 0.005 | 0.030 ± 0.020 | 0.968 ± 0.005 | 0.030 ± 0.020 | 78 ± 16 | 2 ± 0 |
P21 | 0.962 ± 0.003 | 0.018 ± 0.014 | 0.964 ± 0.003 | 0.018 ± 0.014 | 67 ± 12 | 2 ± 0 |
P23 | 0.967 ± 0.002 | 0.019 ± 0.012 | 0.968 ± 0.002 | 0.019 ± 0.012 | 93 ± 21 | 2 ± 0 |
P25 | 0.947 ± 0.005 | 0.016 ± 0.012 | 0.952 ± 0.005 | 0.016 ± 0.012 | 57 ± 11 | 2 ± 0 |
P26 | 0.968 ± 0.006 | 0.017 ± 0.017 | 0.968 ± 0.006 | 0.018 ± 0.017 | 81 ± 42 | 2 ± 0 |
P28 | 0.958 ± 0.003 | 0.017 ± 0.014 | 0.960 ± 0.003 | 0.017 ± 0.015 | 64 ± 10 | 2 ± 0 |
P30 | 0.955 ± 0.003 | 0.021 ± 0.012 | 0.958 ± 0.002 | 0.020 ± 0.012 | 68 ± 10 | 2 ± 0 |
P34 | 0.964 ± 0.003 | 0.016 ± 0.013 | 0.966 ± 0.002 | 0.015 ± 0.013 | 70 ± 8 | 2 ± 0 |
P37 | 0.965 ± 0.002 | 0.011 ± 0.011 | 0.965 ± 0.002 | 0.010 ± 0.011 | 59 ± 6 | 2 ± 0 |
P39 | 0.968 ± 0.001 | 0.022 ± 0.020 | 0.968 ± 0.001 | 0.022 ± 0.021 | 74 ± 10 | 2 ± 0 |
P41 | 0.973 ± 0.002 | 0.018 ± 0.022 | 0.973 ± 0.002 | 0.018 ± 0.022 | 111 ± 22 | 2 ± 0 |
P42 | 0.961 ± 0.003 | 0.013 ± 0.011 | 0.962 ± 0.002 | 0.012 ± 0.011 | 61 ± 19 | 2 ± 0 |
P43 | 0.964 ± 0.003 | 0.011 ± 0.007 | 0.964 ± 0.002 | 0.010 ± 0.008 | 68 ± 13 | 2 ± 0 |
P45 | 0.952 ± 0.004 | 0.019 ± 0.014 | 0.957 ± 0.003 | 0.019 ± 0.015 | 58 ± 12 | 2 ± 0 |
P46 | 0.945 ± 0.005 | 0.022 ± 0.013 | 0.949 ± 0.004 | 0.022 ± 0.014 | 52 ± 7 | 2 ± 0 |
P48 | 0.956 ± 0.004 | 0.018 ± 0.015 | 0.959 ± 0.004 | 0.018 ± 0.015 | 64 ± 8 | 2 ± 0 |
P56 | 0.968 ± 0.003 | 0.023 ± 0.016 | 0.968 ± 0.003 | 0.023 ± 0.016 | 79 ± 19 | 2 ± 0 |
P58 | 0.960 ± 0.003 | 0.010 ± 0.006 | 0.960 ± 0.002 | 0.010 ± 0.006 | 57 ± 7 | 2 ± 0 |
P62 | 0.968 ± 0.002 | 0.013 ± 0.013 | 0.968 ± 0.002 | 0.014 ± 0.013 | 80 ± 13 | 2 ± 0 |
P64 | 0.961 ± 0.004 | 0.016 ± 0.016 | 0.963 ± 0.003 | 0.016 ± 0.016 | 76 ± 26 | 2 ± 0 |
P65 | 0.960 ± 0.003 | 0.013 ± 0.009 | 0.960 ± 0.002 | 0.012 ± 0.009 | 69 ± 18 | 2 ± 0 |
Coefficient | Description | Mean Post. Distrib. | 95% HDI |
---|---|---|---|
Agreement | |||
associated with the home base for the Valence dimension | |||
Dominance | |||
associated with the home base for the Arousal dimension | |||
Engagement | |||
associated with the home base for the Arousal dimension | |||
associated with the diffusion on the Arousal dimension |
Coefficient | Description | Mean Post. Distrib. | 95% HDI |
---|---|---|---|
Dominance | |||
associated with the home base for the Arousal dimension | |||
Engagement | |||
associated with the home base for the Arousal dimension | |||
associated with the diffusion on the Arousal dimension |
ICC Humans | ICC Model | ICC Humans + Model | |
---|---|---|---|
agreement | |||
dominance | |||
engagement | |||
performance | |||
rapport | |||
average |
Non-Causal BLR | Non-Causal Trunc. BLR | Causal Outcome Model | |
---|---|---|---|
Typical Test | |||
Uncommon Test |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amelio, A.; Patania, S.; Buršić, S.; Cuculo, V.; Boccignone, G. Inferring Causal Factors of Core Affect Dynamics on Social Participation through the Lens of the Observer. Sensors 2023, 23, 2885. https://doi.org/10.3390/s23062885
D’Amelio A, Patania S, Buršić S, Cuculo V, Boccignone G. Inferring Causal Factors of Core Affect Dynamics on Social Participation through the Lens of the Observer. Sensors. 2023; 23(6):2885. https://doi.org/10.3390/s23062885
Chicago/Turabian StyleD’Amelio, Alessandro, Sabrina Patania, Sathya Buršić, Vittorio Cuculo, and Giuseppe Boccignone. 2023. "Inferring Causal Factors of Core Affect Dynamics on Social Participation through the Lens of the Observer" Sensors 23, no. 6: 2885. https://doi.org/10.3390/s23062885
APA StyleD’Amelio, A., Patania, S., Buršić, S., Cuculo, V., & Boccignone, G. (2023). Inferring Causal Factors of Core Affect Dynamics on Social Participation through the Lens of the Observer. Sensors, 23(6), 2885. https://doi.org/10.3390/s23062885