Epoxy-Coated Side-Polished Fiber-Optic Temperature Sensor for Cryogenic Conditions
Abstract
1. Introduction
2. Principle and Device Fabrication
3. Experiments and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sampath, U.; Kim, H.; Kim, D.; Kim, Y.; Song, M. In-situ cure monitoring of wind turbine blades by using fiber Bragg grating sensors and Fresnel reflection measurement. Sensors 2015, 15, 18229–18238. [Google Scholar] [CrossRef]
- Ying, Y.; Si, G.; Luan, F.; Xu, K.; Qi, Y.; Li, H. Recent research progress of optical fiber sensors based on D-shaped structure. Opt. Laser Technol. 2016, 90, 149–157. [Google Scholar] [CrossRef]
- Botewad, S.N.; Pahurkar, V.G.; Muley, G.G. Fabrication and evaluation of evanescent wave absorption-based polyaniline-cladding modified fiber optic urea biosensor. Opt. Fiber Technol. 2016, 40, 8–12. [Google Scholar] [CrossRef]
- Jung, W.; Kim, S.; Kim, K.; Kim, E.; Kang, S. High-Sensitivity Temperature Sensor Using a Side-Polished Single-Mode Fiber Covered with the Polymer Planar Waveguide. IEEE Photonic. Technol. Lett. 2001, 13, 1209–1211. [Google Scholar] [CrossRef]
- He, C.; Fang, J.; Zhang, Y.; Yang, Y.; Yu, J.; Zhang, J.; Guan, H.; Qiu, W.; Wu, P.; Dong, J.; et al. High performance all-fiber temperature sensor based on coreless side-polished fiber wrapped with polydimethylsiloxane. Opt. Exp. 2018, 26, 9686–9699. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Tian, Z.; Yu, H.; Yang, B.; Jing, G.; Liao, G.; Zhang, J.; Yu, J.; Tang, J.; Luo, Y.; et al. Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing. Opt. Exp. 2014, 22, 32502–32508. [Google Scholar] [CrossRef] [PubMed]
- Sampath, U.; Kim, D.; Kim, H.; Song, M. Polymer-coated FBG sensor for simultaneous temperature and strain monitoring in composite materials under cryogenic conditions. Appl. Opt. 2018, 57, 492–497. [Google Scholar] [CrossRef]
- Lupi, C.; Felli, F.; Brotzu, A.; Caponero, M.A.; Paolozzi, A. Improving FBG sensor sensitivity at cryogenic temperature by metal coating. IEEE Sens. J. 2008, 8, 1299–1304. [Google Scholar] [CrossRef]
- Chiuchiolo, A.; Palmieri, L.; Consales, M.; Giordano, M. Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors. Opt. Lett. 2015, 40, 4424–4427. [Google Scholar] [CrossRef]
- Rajini-Kumar, R.; Suesser, M.; Narayankhedkar, G.; Krieg, G.; Atrey, M.D. Performance evaluation of metal-coated fiber Bragg grating sensors for sensing cryogenic temperature. Cryogenics 2008, 48, 132–147. [Google Scholar] [CrossRef]
- Sampath, U.; Kim, D.G.; Kim, H.; Song, M. Cryogenic temperature sensor based on Fresnel reflection from a polymer-coated facet of optical fiber. IEEE Sens. J. 2018, 18, 3640–3644. [Google Scholar] [CrossRef]
- Sampath, U.; Kim, D.G.; Song, M. Side-Polished Fiber-Optic Temperature Sensor for Cryogenic Conditions. In Proceedings of the 26th Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018. [Google Scholar]
- Paul, P.H.; Kychakoff, G. Fiber-optic evanescent field absorption sensor. Appl. Phys. Lett. 1987, 51, 12–14. [Google Scholar] [CrossRef]
- Memon, S.F.; Ali, M.M.; Pembroke, J.T.; Chowdhry, B.S.; Lewis, E. Measurement of ultralow level bioethanol concentration for production using evanescent wave based optical fiber sensor. IEEE Trans. Instrum. Meas. 2017, 67, 780–788. [Google Scholar] [CrossRef]
- Sharma, A.K.; Gupta, J.; Sharma, I. Fiber-optic evanescent wave absorption-based sensors: A detailed review of advancements in the last decade (2007–2018). Optik 2019, 183, 1008–1025. [Google Scholar] [CrossRef]
- Tang, J.; Zhou, J.; Guan, J.; Long, S.; Yu, J.; Guan, H.; Lu, H.; Luo, Y.; Zhang, J.; Chen, Z. Fabrication of Side-Polished Single Mode-Multimode-Single Mode fiber and Its Characteristics of Refractive Index Sensing. IEEE J. Sel. Top. Quant. 2017, 23, 5600708. [Google Scholar] [CrossRef]
- Kang, E.S.; Lee, T.H.; Bae, B.S. Measurement of the thermos-optic coefficients in sol-gel derived inorganic-organic hybrid material films. Appl. Phys. Lett. 2002, 81, 1438–1440. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampath, U.; Song, M. Epoxy-Coated Side-Polished Fiber-Optic Temperature Sensor for Cryogenic Conditions. Sensors 2023, 23, 2850. https://doi.org/10.3390/s23052850
Sampath U, Song M. Epoxy-Coated Side-Polished Fiber-Optic Temperature Sensor for Cryogenic Conditions. Sensors. 2023; 23(5):2850. https://doi.org/10.3390/s23052850
Chicago/Turabian StyleSampath, Umesh, and Minho Song. 2023. "Epoxy-Coated Side-Polished Fiber-Optic Temperature Sensor for Cryogenic Conditions" Sensors 23, no. 5: 2850. https://doi.org/10.3390/s23052850
APA StyleSampath, U., & Song, M. (2023). Epoxy-Coated Side-Polished Fiber-Optic Temperature Sensor for Cryogenic Conditions. Sensors, 23(5), 2850. https://doi.org/10.3390/s23052850