An Efficient Deep Learning-Based High-Definition Image Compressed Sensing Framework for Large-Scene Construction Site Monitoring
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Sampling Subnet
3.2. Initial Recovery Subnet Using Pixelshuffle
3.3. Deep Recovery Body Subnet Using Downsampling, Pixelshuffle, and ECA Attention Mechanism
3.4. Recovery Head and Loss Function
4. Discussion
4.1. Training Details
4.2. Comparison of EHDCS-Net and CSNet+
4.3. Validating the Performance of the Improved ResBlock and Different Loss Functions
4.3.1. Comparison with and without the ECA Module Attention Mechanism
4.3.2. Comparison of Loss and Loss
4.4. Comparisons with State-of-the-Art Methods
4.5. Running Time Comparisons
4.6. FLOPs and Memory Usage Comparisons
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dorafshan, S.; Azari, H. Deep Learning Models for Bridge Deck Evaluation Using Impact Echo. Constr. Build. Mater. 2020, 263, 120109. [Google Scholar] [CrossRef]
- Luo, H.; Liu, J.; Fang, W.; Love, P.E.D.; Yu, Q.; Lu, Z. Real-Time Smart Video Surveillance to Manage Safety: A Case Study of a Transport Mega-Project. Adv. Eng. Inform. 2020, 45, 101100. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, Z.; Hammad, A. Automated Excavators Activity Recognition and Productivity Analysis from Construction Site Surveillance Videos. Autom. Constr. 2020, 110, 103045. [Google Scholar] [CrossRef]
- Meng, L.; Peng, Z.; Zhou, J.; Zhang, J.; Lu, Z.; Baumann, A.; Du, Y. Real-Time Detection of Ground Objects Based on Unmanned Aerial Vehicle Remote Sensing with Deep Learning: Application in Excavator Detection for Pipeline Safety. Remote Sens. 2020, 12, 182. [Google Scholar] [CrossRef] [Green Version]
- Zeng, T.; Wang, J.; Cui, B.; Wang, X.; Wang, D.; Zhang, Y. The Equipment Detection and Localization of Large-Scale Construction Jobsite by Far-Field Construction Surveillance Video Based on Improving YOLOv3 and Grey Wolf Optimizer Improving Extreme Learning Machine. Constr. Build. Mater. 2021, 291, 123268. [Google Scholar] [CrossRef]
- Cai, J.; Yang, L.; Zhang, Y.; Li, S.; Cai, H. Multitask Learning Method for Detecting the Visual Focus of Attention of Construction Workers. J. Constr. Eng. Manage. 2021, 147, 04021063. [Google Scholar] [CrossRef]
- Li, S.; Cao, Y.; Cai, H. Automatic Pavement-Crack Detection and Segmentation Based on Steerable Matched Filtering and an Active Contour Model. J. Comput. Civ. Eng. 2017, 31, 04017045. [Google Scholar] [CrossRef]
- Reddy Surakanti, S.; Alireza Khoshnevis, S.; Ahani, H.; Izadi, V. Efficient Recovery of Structrual Health Monitoring Signal Based on Kronecker Compressive Sensing. Int. J. Appl. Eng. Res. 2019, 14, 4256–4261. [Google Scholar]
- Brilakis, I.K. Long-Distance Wireless Networking for Site—Office Data Communications. Electron. J. Inf. Technol. Constr. 2007, 12, 151–164. [Google Scholar]
- Luo, X.; Feng, L.; Xun, H.; Zhang, Y.; Li, Y.; Yin, L. Rinegan: A Scalable Image Processing Architecture for Large Scale Surveillance Applications. Front. Neurorobot. 2021, 15, 648101. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, J.; Liu, Q.; Liu, G. Learning Image Compressed Sensing with Sub-Pixel Convolutional Generative Adversarial Network. Pattern Recognit. 2020, 98, 107051. [Google Scholar] [CrossRef]
- Gao, Z.; Xiong, C.; Ding, L.; Zhou, C. Image Representation Using Block Compressive Sensing for Compression Applications. J. Vis. Commun. Image Represent. 2013, 24, 885–894. [Google Scholar] [CrossRef]
- Rani, M.; Dhok, S.B.; Deshmukh, R.B. A Systematic Review of Compressive Sensing: Concepts, Implementations and Applications. IEEE Access 2018, 6, 4875–4894. [Google Scholar] [CrossRef]
- Yuan, X.; Haimi-Cohen, R. Image Compression Based on Compressive Sensing: End-to-End Comparison with JPEG. IEEE Trans. Multimed. 2020, 22, 2889–2904. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. Communication in the Presence of Noise. Proc. IRE 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Shi, W.; Jiang, F.; Liu, S.; Zhao, D. Image Compressed Sensing Using Convolutional Neural Network. IEEE Trans. Image Process. 2020, 29, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, Y.; Liu, J.; Wen, F.; Zhu, C. AMP-Net: Denoising-Based Deep Unfolding for Compressive Image Sensing. IEEE Trans. Image Process. 2021, 30, 1487–1500. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, C.; Gao, W. Optimization-Inspired Compact Deep Compressive Sensing. IEEE J. Sel. Top. Signal Process. 2020, 14, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.; Teboulle, M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L.; Maleki, A.; Montanari, A. Message-Passing Algorithms for Compressed Sensing. Proc. Natl. Acad. Sci. USA 2009, 106, 18914–18919. [Google Scholar] [CrossRef] [Green Version]
- Wipf, D.P.; Rao, B.D. Sparse Bayesian Learning for Basis Selection. IEEE Trans. Signal Process. 2004, 52, 2153–2164. [Google Scholar] [CrossRef]
- Tropp, J.A.; Gilbert, A.C. Signal Recovery from Random Measurements via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef] [Green Version]
- Ravishankar, S.; Ye, J.C.; Fessler, J.A. Image Reconstruction: From Sparsity to Data-Adaptive Methods and Machine Learning. Proc. IEEE 2020, 108, 86–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Jiang, F.; Zhang, S.; Zhao, D. Deep Networks for Compressed Image Sensing. In Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; pp. 877–882. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Jiang, F.; Liu, S.; Zhao, D. Scalable Convolutional Neural Network for Image Compressed Sensing. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 12282–12291. [Google Scholar] [CrossRef]
- Kulkarni, K.; Lohit, S.; Turaga, P.; Kerviche, R.; Ashok, A. ReconNet: Non-Iterative Reconstruction of Images from Compressively Sensed Measurements. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 449–458. [Google Scholar] [CrossRef]
- Zhang, J.; Ghanem, B. ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 1828–1837. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Jiang, F.; Liu, S.; Zhao, D. Multi-Scale Deep Networks for Image Compressed Sensing. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 46–50. [Google Scholar] [CrossRef]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Fan, Y.; Yang, J.; Xu, N.; Wang, Z.; Wang, X.; Huang, T. Wide Activation for Efficient and Accurate Image Super-Resolution. arXiv 2018, arXiv:1808.08718. [Google Scholar]
- Shi, W.; Caballero, J.; Huszar, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar] [CrossRef] [Green Version]
- Hui, Z.; Yang, Y.; Gao, X.; Wang, X. Lightweight Image Super-Resolution with Information Multi-Distillation Network. In Proceedings of the 27th ACM International Conference on Multimedia, New York, NY, USA, 21–25 October 2019; pp. 2024–2032. [Google Scholar] [CrossRef] [Green Version]
- Sang, Y.; Li, T.; Zhang, S.; Yang, Y. RARNet Fusing Image Enhancement for Real-World Image Rain Removal. Appl. Intell. 2022, 52, 2037–2050. [Google Scholar] [CrossRef]
- Asif, M.; Chen, L.; Song, H.; Yang, J.; Frangi, A.F. An Automatic Framework for Endoscopic Image Restoration and Enhancement. Appl. Intell. 2021, 51, 1959–1971. [Google Scholar] [CrossRef]
- Fu, L.; Jiang, H.; Wu, H.; Yan, S.; Wang, J.; Wang, D. Image Super-Resolution Reconstruction Based on Instance Spatial Feature Modulation and Feedback Mechanism. Appl. Intell. 2022, 53, 601–615. [Google Scholar] [CrossRef]
- Liu, Q.M.; Jia, R.S.; Liu, Y.B.; Sun, H.B.; Yu, J.Z.; Sun, H.M. Infrared Image Super-Resolution Reconstruction by Using Generative Adversarial Network with an Attention Mechanism. Appl. Intell. 2021, 51, 2018–2030. [Google Scholar] [CrossRef]
- Deepa, S.N.; Rasi, D. FHGSO: Flower Henry Gas Solubility Optimization Integrated Deep Convolutional Neural Network for Image Classification. Appl. Intell. 2022, 1–20. [Google Scholar] [CrossRef]
- Cao, W.; Wang, R.; Fan, M.; Fu, X.; Wang, H.; Wang, Y. A New Froth Image Classification Method Based on the MRMR-SSGMM Hybrid Model for Recognition of Reagent Dosage Condition in the Coal Flotation Process. Appl. Intell. 2022, 52, 732–752. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Huang, C.; Lin, S. A New Sparse Representation Framework for Compressed Sensing MRI. Knowl.-Based Syst. 2020, 188, 104969. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, J.; Li, H.; Xu, Z. ADMM-CSNet: A Deep Learning Approach for Image Compressive Sensing. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 521–538. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, Z.; Ren, F. LAPRAN: A Scalable Laplacian Pyramid Reconstructive Adversarial Network for Flexible Compressive Sensing Reconstruction. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 491–507. [Google Scholar] [CrossRef] [Green Version]
- Mun, S.; Fowler, J.E. Block Compressed Sensing of Images Using Directional Transforms. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 3021–3024. [Google Scholar] [CrossRef]
- Li, C.; Yin, W.; Jiang, H.; Zhang, Y. An Efficient Augmented Lagrangian Method with Applications to Total Variation Minimization. Comput. Optim. Appl. 2013, 56, 507–530. [Google Scholar] [CrossRef] [Green Version]
- Metzler, C.A.; Maleki, A.; Baraniuk, R.G. From Denoising to Compressed Sensing. IEEE Trans. Inf. Theory 2016, 62, 5117–5144. [Google Scholar] [CrossRef]
- Mousavi, A.; Patel, A.B.; Baraniuk, R.G. A Deep Learning Approach to Structured Signal Recovery. In Proceedings of the 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 29 September–2 October 2015; pp. 1336–1343. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; Volume 2016, pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11531–11539. [Google Scholar] [CrossRef]
- Hui, Z.; Wang, X.; Gao, X. Fast and Accurate Single Image Super-Resolution via Information Distillation Network. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 723–731. [Google Scholar] [CrossRef] [Green Version]
- Ahn, N.; Kang, B.; Sohn, K.A. Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 256–272. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 294–310. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-Resolution. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2472–2481. [Google Scholar] [CrossRef] [Green Version]
Algorithm | Metrics | CS Ratios | ||||
---|---|---|---|---|---|---|
0.01 | 0.04 | 0.1 | 0.25 | 0.5 | ||
D-AMP | PSNR (dB) | 5.58 | 11.28 | 19.87 | 31.62 | 37.34 |
SSIM | 0.0034 | 0.0971 | 0.3757 | 0.7233 | 0.8504 | |
Running time (s) | 39.139 (CPU) | |||||
DCS | PSNR (dB) | 17.12 | 18.03 | 21.53 | 21.85 | 22.30 |
SSIM | 0.3251 | 0.2202 | 0.4546 | 0.5116 | 0.5452 | |
Running time (s) | 0.036 (GPU) | |||||
ReconNet | PSNR (dB) | 20.16 | 24.29 | 27.63 | 32.07 | 37.42 |
SSIM | 0.5431 | 0.7382 | 0.8487 | 0.9246 | 0.9609 | |
Running time (s) | 0.004 (GPU) | |||||
ISTA-Net+ | PSNR (dB) | 17.48 | 21.14 | 25.93 | 32.27 | 38.08 |
SSIM | 0.4403 | 0.5947 | 0.7840 | 0.9167 | 0.9680 | |
Running time (s) | 0.027 (GPU) | |||||
CSNet+ | PSNR (dB) | 20.09 | 24.24 | 27.76 | 32.76 | 38.19 |
SSIM | 0.5334 | 0.7412 | 0.8573 | 0.9322 | 0.9739 | |
Running time (s) | 0.007 (GPU) | |||||
AMP-Net | PSNR (dB) | 20.20 | 25.26 | 29.40 | 34.63 | 40.34 |
SSIM | 0.5581 | 0.7722 | 0.8779 | 0.9481 | 0.9807 | |
Running time (s) | 0.027 (GPU) |
Methods | Average Running Time (s) |
---|---|
EHDCS-Net | 0.0028 |
CSNet+ | 0.1236 |
AMP-Net | 0.3253 |
ISTA-Net+ | 0.0129 |
OPINE-Net+ | 0.0151 |
ReconNet | 0.0623 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, T.; Wang, J.; Wang, X.; Zhang, Y.; Ren, B. An Efficient Deep Learning-Based High-Definition Image Compressed Sensing Framework for Large-Scene Construction Site Monitoring. Sensors 2023, 23, 2563. https://doi.org/10.3390/s23052563
Zeng T, Wang J, Wang X, Zhang Y, Ren B. An Efficient Deep Learning-Based High-Definition Image Compressed Sensing Framework for Large-Scene Construction Site Monitoring. Sensors. 2023; 23(5):2563. https://doi.org/10.3390/s23052563
Chicago/Turabian StyleZeng, Tuocheng, Jiajun Wang, Xiaoling Wang, Yunuo Zhang, and Bingyu Ren. 2023. "An Efficient Deep Learning-Based High-Definition Image Compressed Sensing Framework for Large-Scene Construction Site Monitoring" Sensors 23, no. 5: 2563. https://doi.org/10.3390/s23052563
APA StyleZeng, T., Wang, J., Wang, X., Zhang, Y., & Ren, B. (2023). An Efficient Deep Learning-Based High-Definition Image Compressed Sensing Framework for Large-Scene Construction Site Monitoring. Sensors, 23(5), 2563. https://doi.org/10.3390/s23052563