Reduced Graphene Oxide/Polyelectrolyte Multilayers for Fast Resistive Humidity Sensing
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deyle, E.R.; Maher, M.C.; Hernandez, R.D.; Basu, S.; Sugihara, G. Global environmental drivers of influenza. Proc. Natl. Acad. Sci. USA 2016, 113, 13081–13086. [Google Scholar] [CrossRef] [PubMed]
- Vega-Mercado, H.; Góngora-Nieto, M.M.; Barbosa-Cánovas, G.V. Advances in dehydration of foods. J. Food Eng. 2001, 49, 271–289. [Google Scholar] [CrossRef]
- Atesci, H.; Kaliginedi, V.; Celis Gil, J.A.; Ozawa, H.; Thijssen, J.M.; Broekmann, P.; Haga, M.-A.; van der Molen, S.J. Humidity-controlled rectification switching in ruthenium-complex molecular junctions. Nat. Nanotechnol. 2018, 13, 117–121. [Google Scholar] [CrossRef]
- Ambler, H. Humidity and corrosion. Nature 1955, 176, 1082. [Google Scholar] [CrossRef]
- Bott, R.F.; Oliveira, W.P. Storage conditions for stability testing of pharmaceuticals in hot and humid regions. Drug Dev. Ind. Pharm. 2007, 33, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Laba, D. Rheological Properties of Cosmetics and Toiletries; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- An, H.; Habib, T.; Shah, S.; Gao, H.; Patel, A.; Echols, I.; Zhao, X.; Radovic, M.; Green, M.J.; Lutkenhaus, J.L. Water sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing. ACS Appl. Nano Mater. 2019, 2, 948–955. [Google Scholar] [CrossRef]
- Chung, V.P.; Yip, M.-C.; Fang, W. Resorcinol–formaldehyde aerogels for CMOS-MEMS capacitive humidity sensor. Sens. Actuators B 2015, 214, 181–188. [Google Scholar] [CrossRef]
- Bi, H.; Yin, K.; Xie, X.; Ji, J.; Wan, S.; Sun, L.; Terrones, M.; Dresselhaus, M.S. Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 2013, 3, 2714. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, J.; Yuan, Q.; Dong, B. Intercalated graphitic carbon nitride: A fascinating two-dimensional nanomaterial for an ultra-sensitive humidity nanosensor. Nanoscale 2014, 6, 9250–9256. [Google Scholar] [CrossRef]
- Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N.; Kivioja, J.; Ryhanen, T. Ultrafast graphene oxide humidity sensors. ACS Nano 2013, 7, 11166–11173. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, X.; Zhu, J.; Zeng, B.; Wu, Z.; Li, X. The effect of ambient humidity on the electrical properties of graphene oxide films. Nanoscale Res. Lett. 2012, 7, 363. [Google Scholar] [CrossRef] [PubMed]
- Balashov, S.; Balachova, O.; Pavani Filho, A.; Bazetto, M.C.Q.; de Almeida, M. Surface acoustic wave humidity sensors based on graphene oxide thin films deposited with the surface acoustic wave atomizer. ECS Trans. 2012, 49, 445–450. [Google Scholar] [CrossRef]
- Le, X.; Wang, X.; Pang, J.; Liu, Y.; Fang, B.; Xu, Z.; Gao, C.; Xu, Y.; Xie, J. A high performance humidity sensor based on surface acoustic wave and graphene oxide on AlN/Si layered structure. Sens. Actuators B 2018, 255, 2454–2461. [Google Scholar] [CrossRef]
- Khijwania, S.K.; Srinivasan, K.L.; Singh, J.P. An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity. Sens. Actuators B 2005, 104, 217–222. [Google Scholar] [CrossRef]
- He, C.; Korposh, S.; Correia, R.; Liu, L.; Hayes-Gill, B.R.; Morgan, S.P. Optical fibre sensor for simultaneous temperature and relative humidity measurement: Towards absolute humidity evaluation. Sens. Actuators B 2021, 344, 130154. [Google Scholar] [CrossRef]
- Liu, D.-S.; Khan, U.; Li, P.; Khan, M.A.; Wu, J.; Wang, Z. Ion gel coated graphene field effect transistor for humidity sensing applications. IEEE Sens. J. 2021, 21, 18483–18487. [Google Scholar] [CrossRef]
- Duan, Z.; Yuan, Z.; Jiang, Y.; Zhao, Q.; Huang, Q.; Zhang, Y.; Liu, B.; Tai, H. Power generation humidity sensor based on primary battery structure. Chem. Eng. J. 2022, 446, 136910. [Google Scholar] [CrossRef]
- Lei, D.; Zhang, Q.; Liu, N.; Su, T.; Wang, L.; Ren, Z.; Zhang, Z.; Su, J.; Gao, Y. Self-powered graphene oxide humidity sensor based on potentiometric humidity transduction mechanism. Adv. Funct. Mater. 2022, 32, 2107330. [Google Scholar] [CrossRef]
- Yuan, Z.; Tai, H.; Bao, X.; Liu, C.; Ye, Z.; Jiang, Y. Enhanced humidity-sensing properties of novel graphene oxide/zinc oxide nanoparticles layered thin film QCM sensor. Mater. Lett. 2016, 174, 28–31. [Google Scholar] [CrossRef]
- Zhou, G.; Byun, J.-H.; Oh, Y.; Jung, B.-M.; Cha, H.-J.; Seong, D.-G.; Um, M.-K.; Hyun, S.; Chou, T.-W. Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/poly (vinyl alcohol) filaments. ACS Appl. Mater. Interfaces 2017, 9, 4788–4797. [Google Scholar] [CrossRef]
- Varghese, S.S.; Lonkar, S.; Singh, K.; Swaminathan, S.; Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuators B 2015, 218, 160–183. [Google Scholar] [CrossRef]
- Singh, E.; Meyyappan, M.; Nalwa, H.S. Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 2017, 9, 34544–34586. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Zheng, W.; Wang, W.; Huang, H.; Wang, C.; MacDiarmid, A.G.; Wei, Y. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J. Am. Chem. Soc. 2008, 130, 5036–5037. [Google Scholar] [CrossRef]
- Sun, A.; Huang, L.; Li, Y. Study on humidity sensing property based on TiO2 porous film and polystyrene sulfonic sodium. Sens. Actuators B 2009, 139, 543–547. [Google Scholar] [CrossRef]
- Kuang, Q.; Lao, C.; Wang, Z.L.; Xie, Z.; Zheng, L. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070–6071. [Google Scholar] [CrossRef]
- Feng, H.; Li, C.; Li, T.; Diao, F.; Xin, T.; Liu, B.; Wang, Y. Three-dimensional hierarchical SnO2 dodecahedral nanocrystals with enhanced humidity sensing properties. Sens. Actuators B 2017, 243, 704–714. [Google Scholar] [CrossRef]
- Malik, R.; Tomer, V.K.; Chaudhary, V.; Dahiya, M.S.; Sharma, A.; Nehra, S.; Duhan, S.; Kailasam, K. An excellent humidity sensor based on In–SnO2 loaded mesoporous graphitic carbon nitride. J. Mater. Chem. A 2017, 5, 14134–14143. [Google Scholar] [CrossRef]
- Gu, L.; Zheng, K.; Zhou, Y.; Li, J.; Mo, X.; Patzke, G.R.; Chen, G. Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity. Sens. Actuators B 2011, 159, 1–7. [Google Scholar] [CrossRef]
- Kano, S.; Kim, K.; Fujii, M. Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin. ACS Sens. 2017, 2, 828–833. [Google Scholar] [CrossRef]
- Miao, J.; Cai, L.; Zhang, S.; Nah, J.; Yeom, J.; Wang, C. Air-stable humidity sensor using few-layer black phosphorus. ACS Appl. Mater. Interfaces 2017, 9, 10019–10026. [Google Scholar] [CrossRef]
- Guo, H.; Lan, C.; Zhou, Z.; Sun, P.; Wei, D.; Li, C. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 2017, 9, 6246–6253. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M.; Chen, P.; Wang, S.; Shi, D.; Sun, Q.; Zhang, G. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017, 29, 1702076. [Google Scholar] [CrossRef] [PubMed]
- Petrila, I.; Tudorache, F. Annealing temperature effects on humidity sensor properties for Mg0.5W0.5Fe2O4 spinel ferrite. Sensors 2022, 22, 9182. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, Q.; Wang, S.; Huang, Q.; Yuan, Z.; Zhang, Y.; Jiang, Y.; Tai, H. Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sens. Actuators B 2020, 317, 128204. [Google Scholar] [CrossRef]
- Jlassi, K.; Mallick, S.; Mutahir, H.; Ahmad, Z.; Touati, F. Synthesis of in situ photoinduced halloysite-polypyrrole@silver nanocomposite for the potential application in humidity sensors. Nanomaterials 2020, 10, 1426. [Google Scholar] [CrossRef]
- Yao, Y.; Ma, W. Self-assembly of polyelectrolytic/graphene oxide multilayer thin films on quartz crystal microbalance for humidity detection. IEEE Sens. J. 2014, 14, 4078–4084. [Google Scholar] [CrossRef]
- Su, P.-G.; Li, W.-C.; Tseng, J.-Y.; Ho, C.-J. Fully transparent and flexible humidity sensors fabricated by layer-by-layer self-assembly of thin film of poly (2-acrylamido-2-methylpropane sulfonate) and its salt complex. Sens. Actuators B 2011, 153, 29–36. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.-J.; He, J.-H.; Xu, Q.-F.; Li, H.; Li, N.-J.; Chen, D.-Y.; Lu, J.-M. Polysquaraines: Novel humidity sensor materials with ultra-high sensitivity and good reversibility. Sens. Actuators B 2018, 255, 1147–1152. [Google Scholar] [CrossRef]
- Park, H.; Lee, S.; Jeong, S.H.; Jung, U.H.; Park, K.; Lee, M.G.; Kim, S.; Lee, J. Enhanced moisture-reactive hydrophilic-PTFE-based flexible humidity sensor for real-time monitoring. Sensors 2018, 18, 921. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; Siddiqui, G.U.; Kim, S.W.; Na, K.H.; Choi, Y.S.; Choi, K.H. Thermally modified amorphous polyethylene oxide thin films as highly sensitive linear humidity sensors. Sens. Actuators A 2017, 265, 102–110. [Google Scholar] [CrossRef]
- Guan, X.; Hou, Z.; Wu, K.; Zhao, H.; Liu, S.; Fei, T.; Zhang, T. Flexible humidity sensor based on modified cellulose paper. Sens. Actuators B 2021, 339, 129879. [Google Scholar] [CrossRef]
- Yavari, F.; Koratkar, N. Graphene-based chemical sensors. J. Phys. Chem. Lett. 2012, 3, 1746–1753. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wu, S.; Yin, Z.; Zhang, H. Graphene-based electronic sensors. Chem. Sci. 2012, 3, 1764–1772. [Google Scholar] [CrossRef]
- Afify, A.S.; Ahmad, S.; Khushnood, R.A.; Jagdale, P.; Tulliani, J.-M. Elaboration and characterization of novel humidity sensor based on micro-carbonized bamboo particles. Sens. Actuators B 2017, 239, 1251–1256. [Google Scholar] [CrossRef]
- Ricciardella, F.; Vollebregt, S.; Polichetti, T.; Sarro, P.M.; Duesberg, G.S. Low-humidity sensing properties of multi-layered graphene grown by chemical vapor deposition. Sensors 2020, 20, 3174. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.H.; Sun, Q.; Kim, S.Y.; Han, J.T.; Kim, D.H.; Cho, J.H. Stretchable and multimodal all graphene electronic skin. Adv. Mater. 2016, 28, 2601–2608. [Google Scholar] [CrossRef]
- Park, E.U.; Choi, B.I.; Kim, J.C.; Woo, S.-B.; Kim, Y.-G.; Choi, Y.; Lee, S.-W. Correlation between the sensitivity and the hysteresis of humidity sensors based on graphene oxides. Sens. Actuators B 2018, 258, 255–262. [Google Scholar] [CrossRef]
- Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A.L.M.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B.; Ajayan, P.M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496–500. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Guex, L.G.; Sacchi, B.; Peuvot, K.F.; Andersson, R.L.; Pourrahimi, A.M.; Ström, V.; Farris, S.; Olsson, R.T. Experimental review: Chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 2017, 9, 9562–9571. [Google Scholar] [CrossRef]
- De Lima, B.; Bernardi, M.I.B.; Mastelaro, V.R. Wavelength effect of ns-pulsed radiation on the reduction of graphene oxide. Appl. Surf. Sci. 2020, 506, 144808. [Google Scholar] [CrossRef]
- Tu, N.D.K.; Choi, J.; Park, C.R.; Kim, H. Remarkable conversion between n-and p-type reduced graphene oxide on varying the thermal annealing temperature. Chem. Mater. 2015, 27, 7362–7369. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, Y.; Huang, K. Advances in microwave-assisted production of reduced graphene oxide. Front. Chem. 2019, 7, 355. [Google Scholar] [CrossRef] [PubMed]
- Toh, S.Y.; Loh, K.S.; Kamarudin, S.K.; Daud, W.R.W. Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation. Chem. Eng. J. 2014, 251, 422–434. [Google Scholar] [CrossRef]
- Shojaee, M.; Nasresfahani, S.; Dordane, M.; Sheikhi, M. Fully integrated wearable humidity sensor based on hydrothermally synthesized partially reduced graphene oxide. Sens. Actuators A 2018, 279, 448–456. [Google Scholar] [CrossRef]
- Tao, J.; Wang, Y.; Xiao, Y.; Yao, P.; Chen, C.; Zhang, D.; Pang, W.; Yang, H.; Sun, D.; Wang, Z. One-step exfoliation and functionalization of graphene by hydrophobin for high performance water molecular sensing. Carbon 2017, 116, 695–702. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Li, M.; Fan, Y.; Sun, R. Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film. Sens. Actuators B 2018, 255, 1569–1576. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, J.E.; Kim, Y.H.; Kim, J.J.; Shim, Y.-S.; Kim, S.Y.; Lee, M.H.; Jang, H.W. Room temperature humidity sensors based on rGO/MoS2 hybrid composites synthesized by hydrothermal method. Sens. Actuators B 2018, 258, 775–782. [Google Scholar] [CrossRef]
- Zhang, D.; Tong, J.; Xia, B. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B 2014, 197, 66–72. [Google Scholar] [CrossRef]
- Jha, R.K.; Burman, D.; Santra, S.; Guha, P.K. WS2/GO nanohybrids for enhanced relative humidity sensing at room temperature. IEEE Sens. J. 2017, 17, 7340–7347. [Google Scholar] [CrossRef]
- Sun, L.; Haidry, A.A.; Fatima, Q.; Li, Z.; Yao, Z. Improving the humidity sensing below 30% RH of TiO2 with GO modification. Mater. Res. Bull. 2018, 99, 124–131. [Google Scholar] [CrossRef]
- Biswas, D.; Varughese, S.; Dutta, S. Investigation on resistive humidity sensing in sulfosuccinic acid doped polyaniline films. Synth. Met. 2021, 272, 116662. [Google Scholar] [CrossRef]
- Konkena, B.; Vasudevan, S. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. J. Phys. Chem. Lett. 2012, 3, 867–872. [Google Scholar] [CrossRef]
- Jeon, J.-W.; Kwon, S.R.; Lutkenhaus, J.L. Polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. J. Mater. Chem. A 2015, 3, 3757–3767. [Google Scholar] [CrossRef]
- Rabchinskii, M.K.; Dideikin, A.T.; Kirilenko, D.A.; Baidakova, M.V.; Shnitov, V.V.; Roth, F.; Konyakhin, S.V.; Besedina, N.A.; Pavlov, S.I.; Kuricyn, R.A. Facile reduction of graphene oxide suspensions and films using glass wafers. Sci. Rep. 2018, 8, 14154. [Google Scholar] [CrossRef]
- Mwangi, I.W.; Ngila, J.C.; Ndungu, P.; Msagati, T.A. Method development for the determination of diallyldimethylammonium chloride at trace levels by epoxidation process. Water Air Soil Pollut. 2013, 224, 1638. [Google Scholar] [CrossRef]
- An, H.; Habib, T.; Shah, S.; Gao, H.; Radovic, M.; Green, M.J.; Lutkenhaus, J.L. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 2018, 4, eaaq0118. [Google Scholar] [CrossRef]
- Kwon, S.R.; Harris, J.; Zhou, T.; Loufakis, D.; Boyd, J.G.; Lutkenhaus, J.L. Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power. ACS Nano 2017, 11, 6682–6690. [Google Scholar] [CrossRef]
- Tai, Y.; Lubineau, G. Human-finger electronics based on opposing humidity-resistance responses in carbon nanofilms. Small 2017, 13, 1603486. [Google Scholar] [CrossRef]
- An, K.H.; Jeong, S.Y.; Hwang, H.R.; Lee, Y.H. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube–polypyrrole nanocomposites. Adv. Mater. 2004, 16, 1005–1009. [Google Scholar] [CrossRef]
- Donarelli, M.; Ottaviano, L. 2D materials for gas sensing applications: A review on graphene oxide, MoS2, WS2 and phosphorene. Sensors 2018, 18, 3638. [Google Scholar] [CrossRef] [PubMed]
- Rathi, K.; Pal, K. Impact of doping on GO: Fast response–recovery humidity sensor. ACS Omega 2017, 2, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, L.; Zhang, H.; Ran, F.; Yang, P.; Li, H. Graphene oxide scroll meshes encapsulated Ag nanoparticles for humidity sensing. RSC Adv. 2017, 7, 40119–40123. [Google Scholar] [CrossRef]
- Hosseini, Z.; Ghiass, M.; Fardindoost, S.; Hatamie, S. A new approach to flexible humidity sensors using graphene quantum dots. J. Mater. Chem. C 2017, 5, 8966–8973. [Google Scholar] [CrossRef]
- Pereira, N.M.; Rezende, N.P.; Cunha, T.H.; Barboza, A.P.; Silva, G.G.; Lippross, D.; Neves, B.R.; Chacham, H.; Ferlauto, A.S.; Lacerda, R.G. Aerosol-printed MoS2 ink as a high sensitivity humidity sensor. ACS Omega 2022, 7, 9388–9396. [Google Scholar] [CrossRef]
- Li, Z.; Haidry, A.A.; Dong, B.; Sun, L.; Fatima, Q.; Xie, L.; Yao, Z. Facile synthesis of nitrogen doped ordered mesoporous TiO2 with improved humidity sensing properties. J. Alloys Compd. 2018, 742, 814–821. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, N.; Yin, Y.; Xu, B.; Zhang, W.; Wang, C. High-sensitivity and low-hysteresis GO NH2/mesoporous SiO2 nanosphere-fabric-based humidity sensor for respiratory monitoring and noncontact sensing. Adv. Mater. Interfaces 2022, 9, 2101498. [Google Scholar] [CrossRef]
- Burman, D.; Ghosh, R.; Santra, S.; Guha, P.K. Highly proton conducting MoS2/graphene oxide nanocomposite based chemoresistive humidity sensor. RSC Adv. 2016, 6, 57424–57433. [Google Scholar] [CrossRef]
- Duan, Z.-H.; Zhao, Q.-N.; Li, C.-Z.; Wang, S.; Jiang, Y.-D.; Zhang, Y.-J.; Liu, B.-H.; Tai, H.-L. Enhanced positive humidity sensitive behavior of p-reduced graphene oxide decorated with n-WS2 nanoparticles. Rare Met. 2021, 40, 1762–1767. [Google Scholar] [CrossRef]
- Ma, R.; Tsukruk, V.V. Seriography-guided reduction of graphene oxide biopapers for wearable sensory electronics. Adv. Funct. Mater. 2017, 27, 1604802. [Google Scholar] [CrossRef]
- Hu, X.; Gong, J.; Zhang, L.; Yu, J.C. Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing. Adv. Mater. 2008, 20, 4845–4850. [Google Scholar] [CrossRef]
- Beniwal, A.; Ganguly, P.; Aliyana, A.K.; Khandelwal, G.; Dahiya, R. Screen-printed graphene-carbon ink based disposable humidity sensor with wireless communication. Sens. Actuators B 2023, 374, 132731. [Google Scholar] [CrossRef]
- Arularasu, M.; Harb, M.; Vignesh, R.; Rajendran, T.; Sundaram, R. PVDF/ZnO hybrid nanocomposite applied as a resistive humidity sensor. Surf. Interfaces 2020, 21, 100780. [Google Scholar] [CrossRef]
- Phan, D.-T.; Park, I.; Park, A.-R.; Park, C.-M.; Jeon, K.-J. Black P/graphene hybrid: A fast response humidity sensor with good reversibility and stability. Sci. Rep. 2017, 7, 10561. [Google Scholar] [CrossRef]
- Xia, J.; Wang, X.; Wang, X.; Majer-Baranyi, K.; Zhang, X. Hysteresis dynamic modeling and analysis of flexible nano silver–polyvinyl alcohol humidity sensor based on the microscopic process and langmuir–Fick theory. ACS Omega 2022, 7, 14994–15004. [Google Scholar] [CrossRef]
- Fu, T.; Zhu, J.; Zhuo, M.; Guan, B.; Li, J.; Xu, Z.; Li, Q. Humidity sensors based on graphene/SnOx/CF nanocomposites. J. Mater. Chem. C 2014, 2, 4861–4866. [Google Scholar] [CrossRef]
- Zhen, Y.; Sun, F.-H.; Zhang, M.; Jia, K.; Li, L.; Xue, Q. Ultrafast breathing humidity sensing properties of low-dimensional Fe-doped SnO2 flower-like spheres. RSC Adv. 2016, 6, 27008–27015. [Google Scholar] [CrossRef]
- Su, Y.; Xie, G.; Wang, S.; Tai, H.; Zhang, Q.; Du, H.; Zhang, H.; Du, X.; Jiang, Y. Novel high-performance self-powered humidity detection enabled by triboelectric effect. Sens. Actuators B 2017, 251, 144–152. [Google Scholar] [CrossRef]
- Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review. Sens. Actuators A 2018, 270, 177–194. [Google Scholar] [CrossRef]
Materials | Max. t/RH-Range (s RH−1) | Δt/RH-Range (s RH−1) | trecovery/RH-Range (s RH−1) | tresponse/RH-Range (s RH−1) | Ref. |
---|---|---|---|---|---|
MoS2 | 10.00 | 7.00 | 11.00 | 4.00 | [76] |
rGO/hydrophobin | 8.00 | 2.80 | 8.00 | 5.20 | [57] |
rGO/lignosulfonate | 6.70 | 3.40 | 3.30 | 6.70 | [58] |
rGO/MoS2 | 5.06 | 4.46 | 5.06 | 0.60 | [59] |
rGO/lignosulfonate | 4.10 | 3.48 | 0.62 | 4.10 | [58] |
N-doped TiO2 | 3.69 | 3.47 | 3.69 | 0.22 | [77] |
rGO/PDAC | 1.52 | 0.14 | 1.37 | 1.52 | [60] |
GO/WS2 | 1.45 | 0.20 | 1.45 | 1.25 | [61] |
Graphene quantum dots | 1.10 | 0.80 | 1.10 | 0.30 | [75] |
SiO2/GO-NH2 | 1.08 | 0.85 | 1.08 | 0.23 | [78] |
GO/MoS2 | 1.08 | 0.15 | 0.93 | 1.08 | [79] |
rGO/WS2 | 1.04 | 0.70 | 1.04 | 0.34 | [80] |
GO/TiO2 | 0.86 | 0.00 | 0.86 | 0.86 | [62] |
rGO/silk | 0.78 | 0.74 | 0.78 | 0.04 | [81] |
ZnO | 0.63 | 0.56 | 0.08 | 0.63 | [82] |
rGO/Ag | 0.58 | 0.43 | 0.15 | 0.58 | [74] |
B-doped GO | 0.58 | 0.11 | 0.58 | 0.47 | [73] |
GO | 0.57 | 0.30 | 0.57 | 0.27 | [73] |
Graphene-carbon ink | 0.55 | 0.41 | 0.14 | 0.55 | [83] |
PVDF/ZnO | 0.55 | 0.23 | 0.55 | 0.32 | [84] |
Black P/graphene | 0.55 | 0.38 | 0.55 | 0.16 | [85] |
Polyvinyl alcohol | 0.40 | 0.23 | 0.40 | 0.17 | [86] |
SnOx/carbon fibers/graphene | 0.32 | 0.08 | 0.24 | 0.32 | [87] |
Li-doped GO | 0.29 | 0.24 | 0.29 | 0.05 | [73] |
Fe-doped SnO2 | 0.05 | 0.04 | 0.05 | 0.01 | [88] |
rGO/PVP | 0.04 | 0.01 | 0.04 | 0.03 | [89] |
MXene/PDAC | 0.01 | 0.005 | 0.01 | 0.005 | [7] |
rGO/PDAC | 0.27 | 0.03 | 0.27 | 0.24 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, W.; Go, Y.; An, H. Reduced Graphene Oxide/Polyelectrolyte Multilayers for Fast Resistive Humidity Sensing. Sensors 2023, 23, 1977. https://doi.org/10.3390/s23041977
Noh W, Go Y, An H. Reduced Graphene Oxide/Polyelectrolyte Multilayers for Fast Resistive Humidity Sensing. Sensors. 2023; 23(4):1977. https://doi.org/10.3390/s23041977
Chicago/Turabian StyleNoh, Woojin, Yuchan Go, and Hyosung An. 2023. "Reduced Graphene Oxide/Polyelectrolyte Multilayers for Fast Resistive Humidity Sensing" Sensors 23, no. 4: 1977. https://doi.org/10.3390/s23041977
APA StyleNoh, W., Go, Y., & An, H. (2023). Reduced Graphene Oxide/Polyelectrolyte Multilayers for Fast Resistive Humidity Sensing. Sensors, 23(4), 1977. https://doi.org/10.3390/s23041977