Shadow Filters Using Multiple-Input Differential Difference Transconductance Amplifiers
Abstract
:1. Introduction
2. Proposed Circuit
2.1. Proposed MI-DDTA
2.2. Proposed Shadow Filters
2.3. Non-Idealities Analysis
3. Simulation Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Unuk, T.; Yuce, E. Supplementary DDCC+ based universal filter with grounded passive elements. AEU-Int. J. Electron. Commun. 2021, 132, 153652. [Google Scholar] [CrossRef]
- Shankar, C.; Singh, S.V.; Imam, R. SIFO–VM/TIM universal biquad filter using single DVCCTA with fully CMOS realization. Analog. Integr. Circuits Signal Process. 2021, 109, 33–46. [Google Scholar] [CrossRef]
- Roongmuanpha, N.; Faseehuddin, M.; Herencsar, N.; Tangsrirat, W. Tunable Mixed-Mode Voltage Differencing Buffered Amplifier-Based Universal Filter with Independently High-Q Factor Controllability. Appl. Sci. 2021, 11, 9606. [Google Scholar] [CrossRef]
- Mishra, R.; Mishra, G.R.; Mishra, S.O.; Faseehuddin, M. Electronically Tunable Mixed Mode Universal Filter Employing Grounded Passive Components. Inf. MIDEM-J. Microelectron. Electron. Components Mater. 2022, 52, 105–115. [Google Scholar] [CrossRef]
- Bhaskar, D.; Raj, A.; Senani, R. Three new CFOA-based SIMO-type universal active filter configurations with unrivalled features. AEU-Int. J. Electron. Commun. 2022, 153, 154285. [Google Scholar] [CrossRef]
- Alexander, C.K.; Sadiku, M. Fundamental of Electric Circuits; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Best, R. Phase Locked Loops: Design, Simulation, and Applications, 6th ed.; McGraw Hill: New York, NY, USA, 2007. [Google Scholar]
- Schaumann, R.; Ghausi, M.; Laker, K. Design of Analog Filter: Passive, Active RC, and Switched Capacitor; Prentice Hall: New York, NY, USA, 1990. [Google Scholar]
- Lakys, Y.; Fabre, A. Shadow filters—New family of second-order filters. Electron. Lett. 2010, 46, 276–277. [Google Scholar] [CrossRef]
- Biolkova, V.; Biolek, D. Shadow filters for orthogonal modification of characteristic frequency and bandwidth. Electron. Lett. 2010, 46, 830–831. [Google Scholar] [CrossRef]
- Pandey, N.; Pandey, R.; Choudhary, R.; Sayal, A.; Tripathi, M. Realization of CDTA based frequency agile filter. In Proceedings of the 2013 IEEE International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 26–28 September 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Alaybeyoğlu, E.; Guney, A.; Altun, M.; Kuntman, H. Design of positive feedback driven current-mode amplifiers Z-Copy CDBA and CDTA, and filter applications. Analog. Integr. Circuits Signal Process. 2014, 81, 109–120. [Google Scholar] [CrossRef]
- Atasoyu, M.; Kuntman, H.; Metin, B.; Herencsar, N.; Cicekoglu, O. Design of current-mode class 1 frequency-agile filter employing CDTAs. In Proceedings of the 2015 European Conference on Circuit Theory and Design (ECCTD), Trondheim, Norway, 24–26 August 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Alaybeyoğlu, E.; Kuntman, H. A new frequency agile filter structure employing CDTA for positioning systems and secure communications. Analog. Integr. Circuits Signal Process. 2016, 89, 693–703. [Google Scholar] [CrossRef]
- Nand, D.; Pandey, N. New Configuration for OFCC-Based CM SIMO Filter and its Application as Shadow Filter. Arab. J. Sci. Eng. 2018, 43, 3011–3022. [Google Scholar] [CrossRef]
- Chhabra, K.; Singhal, S.; Pandey, N. Realisation of CBTA Based Current Mode Frequency Agile Filter. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; pp. 1076–1081. [Google Scholar] [CrossRef]
- Singh, D.; Paul, S.K. Realization of current mode universal shadow filter. AEU-Int. J. Electron. Commun. 2020, 117, 153088. [Google Scholar] [CrossRef]
- Singh, D.; Paul, S.K. Improved Current Mode Biquadratic Shadow Universal Filte. Inf. MIDEM-J. Microelectron. Electron. Components Mater. 2022, 51, 51–66. [Google Scholar] [CrossRef]
- Anurag, R.; Pandey, R.; Pandey, N.; Singh, M.; Jain, M. OTRA based shadow filters. In Proceedings of the 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 17–20 December 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Abuelma′Atti, M.T.; Almutairi, N. New voltage-mode bandpass shadow filter. In Proceedings of the 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, Germany, 21–24 March 2016; pp. 412–415. [Google Scholar] [CrossRef]
- Abuelma′Atti, M.T.; Almutairi, N. New CFOA-based shadow banpass filter. In Proceedings of the 2016 International Conference on Electronics, Information, and Communications (ICEIC), Danang, Vietnam, 27–30 January 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Khateb, F.; Jaikla, W.; Kulej, T.; Kumngern, M.; Kubánek, D. Shadow filters based on DDCC. IET Circuits Devices Syst. 2017, 11, 631–637. [Google Scholar] [CrossRef]
- Alaybeyoğlu, E.; Kuntman, H. CMOS implementations of VDTA based frequency agile filters for encrypted communications. Analog. Integr. Circuits Signal Process. 2016, 89, 675–684. [Google Scholar] [CrossRef]
- Buakaew, S.; Narksarp, W.; Wongtaychatham, C. Fully Active and Minimal Shadow Bandpass Filter. In Proceedings of the 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST), Phuket, Thailand, 4–7 July 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Buakaew, S.; Narksarp, W.; Wongtaychatham, C. Shadow Bandpass Filter with Q-improvement. In Proceedings of the 2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST), Luang Prabang, Laos, 2–5 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Buakaew, S.; Narksarp, W.; Wongtaychatham, C. High Quality-Factor Shadow Bandpass Filters with Orthogonality to the Characteristic Frequency. In Proceedings of the 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, 24–27 June 2020; pp. 372–375. [Google Scholar] [CrossRef]
- Moonmuang, P.; Pukkalanun, T.; Tangsrirat, W. Voltage Differencing Gain Amplifier-Based Shadow Filter: A Comparison Study. In Proceedings of the 2020 6th International Conference on Engineering, Applied Sciences and Technology (ICEAST), Chiang Mai, Thailand, 1–4 July 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Buakaew, S.; Wongtaychatham, C. Boosting the Quality Factor of the Shadow Bandpass Filter. J. Circuits Syst. Comput. 2022, 31, 2250248. [Google Scholar] [CrossRef]
- Huaihongthong, P.; Chaichana, A.; Suwanjan, P.; Siripongdee, S.; Sunthonkanokpong, W.; Supavarasuwat, P.; Jaikla, W.; Khateb, F. Single-input multiple-output voltage-mode shadow filter based on VDDDAs. AEU-Int. J. Electron. Commun. 2019, 103, 13–23. [Google Scholar] [CrossRef]
- Varshney, G.; Pandey, N.; Pandey, R. Generalization of shadow filters in fractional domain. Int. J. Circuit Theory Appl. 2021, 49, 3248–3265. [Google Scholar] [CrossRef]
- Khateb, F.; Kulej, T.; Akbari, M.; Tang, K.-T. A 0.5-V Multiple-Input Bulk-Driven OTA in 0.18-μm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022, 30, 1739–1747. [Google Scholar] [CrossRef]
- Kumngern, M.; Suksaibul, P.; Khateb, F.; Kulej, T. 1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter. Sensors 2022, 22, 3535. [Google Scholar] [CrossRef]
- Jaikla, W.; Bunrueangsak, S.; Khateb, F.; Kulej, T.; Suwanjan, P.; Supavarasuwat, P. Inductance Simulators and Their Application to the 4th Order Elliptic Lowpass Ladder Filter Using CMOS VD-DIBAs. Electronics 2021, 10, 684. [Google Scholar] [CrossRef]
- Kumngern, M.; Khateb, F.; Kulej, T.; Psychalinos, C. Multiple-Input Universal Filter and Quadrature Oscillator Using Multiple-Input Operational Transconductance Amplifiers. IEEE Access 2021, 9, 56253–56263. [Google Scholar] [CrossRef]
- Jaikla, W.; Khateb, F.; Kulej, T.; Pitaksuttayaprot, K. Universal Filter Based on Compact CMOS Structure of VDDDA. Sensors 2021, 21, 1683. [Google Scholar] [CrossRef] [PubMed]
- Prommee, P.; Karawanich, K.; Khateb, F.; Kulej, T. Voltage-Mode Elliptic Band-Pass Filter Based on Multiple-Input Transconductor. IEEE Access 2021, 9, 32582–32590. [Google Scholar] [CrossRef]
- Kumngern, M.; Suksaibul, P.; Khateb, F.; Kulej, T. Electronically Tunable Universal Filter and Quadrature Oscillator Using Low-Voltage Differential Difference Transconductance Amplifiers. IEEE Access 2022, 10, 68965–68980. [Google Scholar] [CrossRef]
- Khateb, F.; Kumngern, M.; Kulej, T.; Biolek, D. 0.5 V Differential Difference Transconductance Amplifier and Its Application in Voltage-Mode Universal Filter. IEEE Access 2022, 10, 43209–43220. [Google Scholar] [CrossRef]
- Khateb, F.; Kumngern, M.; Kulej, T.; Biolek, D. 0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator. Sensors 2022, 22, 2655. [Google Scholar] [CrossRef]
- Nevárez-Lozano, H.; Sánchez-Sinencio, E. Minimum parasitic effects biquadratic OTA-C filter architectures. Analog. Integr. Circuits Signal Process. 1991, 1, 297–319. [Google Scholar] [CrossRef]
- Sun, Y.; Fidler, J. Synthesis and performance analysis of universal minimum component integrator-based IFLF OTA-grounded capacitor filter. IEE Proc.-Circuits Devices Syst. 1996, 143, 107–114. [Google Scholar] [CrossRef]
- Tsukutani, T.; Higashimura, M.; Takahashi, N.; Sumi, Y.; Fukui, Y. Versatile voltage-mode active-only biquad with lossless and lossy integrator loop. Int. J. Electron. 2001, 88, 1093–1102. [Google Scholar] [CrossRef]
Transistor | W/L (µm/µm) |
---|---|
DDA | |
M1, M2 | 90/3 |
M3 | 180/3 |
MB, M4, M5 | 30/3 |
M6 | 60/3 |
M7 | 150/3 |
ML (RMOS) | 4/5 |
CG = 0.5 pF, CC = CB = 2.6 pF | |
IB = 1 μA | |
TA | |
M8, M9, M15, M16, MB1, M14c | 30/1 |
M10, M11, M12, M13 | 20/1 |
M10c, M11c, M12c, M13c | 10/1 |
M15c, M16c, MB1c | 15/1 |
M14 | 60/1 |
Parameters | [22] Figure 4b | [23] | [26] | [29] | This Work Figure 3b | This Work Figure 4b |
---|---|---|---|---|---|---|
Technology [μm] | 0.35 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 |
Supply voltage [V] | ±0.5 | ±0.9 | ±1.5 | ±0.9 | ±0.5 | ±0.5 |
No. of ABB | 4-DDCC | 1-VDTA | 4-VDTA | 3-VDDA | 3-DDTA | 4-DDTA |
No. of R & C | 5 + 2 | 0 + 2 | 0 + 2 | 1 + 2 | 1 + 2 | 1 + 2 |
High input impedance | Yes | Yes | Yes | Yes | Yes | Yes |
Low output impedance | No | No | No | HP, AP | HP, BP, BS | Yes |
Availability of responses | LP, HP, BP | LP, BP | LP, BP | LP, HP, BP, BS, AP | LP, HP, BP, BS | LP, HP, BP |
Electronic control of and | No | Yes | Yes | Yes | Yes | Yes |
Power consumption [μW] | 184 | 3620 | - | - | 24.9 | 30 |
THD [%] | - | - | - | 1@200 mVpp | 1.14@250 mVpp | |
IRN [ | - | - | - | 62.6 | ||
Dynamic rang [dB] | - | - | - | 62.9 | ||
Verification of result | Sim./Exp. | Sim. | Sim. | Sim./Exp. | Sim. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumngern, M.; Khateb, F.; Kulej, T. Shadow Filters Using Multiple-Input Differential Difference Transconductance Amplifiers. Sensors 2023, 23, 1526. https://doi.org/10.3390/s23031526
Kumngern M, Khateb F, Kulej T. Shadow Filters Using Multiple-Input Differential Difference Transconductance Amplifiers. Sensors. 2023; 23(3):1526. https://doi.org/10.3390/s23031526
Chicago/Turabian StyleKumngern, Montree, Fabian Khateb, and Tomasz Kulej. 2023. "Shadow Filters Using Multiple-Input Differential Difference Transconductance Amplifiers" Sensors 23, no. 3: 1526. https://doi.org/10.3390/s23031526
APA StyleKumngern, M., Khateb, F., & Kulej, T. (2023). Shadow Filters Using Multiple-Input Differential Difference Transconductance Amplifiers. Sensors, 23(3), 1526. https://doi.org/10.3390/s23031526