
Citation: Kumngern, M.; Khateb, F.;

Kulej, T. Shadow Filters Using

Multiple-Input Differential

Difference Transconductance

Amplifiers. Sensors 2023, 23, 1526.

https://doi.org/10.3390/s23031526

Academic Editor: Haruo Kobayashi

Received: 27 December 2022

Revised: 9 January 2023

Accepted: 25 January 2023

Published: 30 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Shadow Filters Using Multiple-Input Differential Difference
Transconductance Amplifiers
Montree Kumngern 1 , Fabian Khateb 2,3,4,* and Tomasz Kulej 5

1 Department of Telecommunications Engineering, School of Engineering, King Mongkut’s Institute of
Technology Ladkrabang, Bangkok 10520, Thailand

2 Department of Microelectronics, Brno University of Technology, Technická 10, 601 90 Brno, Czech Republic
3 Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105,

272 01 Kladno, Czech Republic
4 Department of Electrical Engineering, University of Defence, Kounicova 65, 662 10 Brno, Czech Republic
5 Department of Electrical Engineering, Czestochowa University of Technology, 42-201 Czestochowa, Poland
* Correspondence: khateb@vutbr.cz

Abstract: This paper presents new voltage-mode shadow filters employing a low-power multiple-
input differential difference transconductance amplifier (MI-DDTA). This device provides multiple-
input voltage-mode arithmetic operation capability, electronic tuning ability, high-input and low-
output impedances. Therefore, the proposed shadow filters offer circuit simplicity, minimum number
of active and passive elements, electronic control of the natural frequency and the quality factor, and
high-input and low-output impedances. The proposed MI-DDTA can work with supply voltage
of ±0.5 V and consumes 9.94 µW of power. The MI-DDTA and shadow filters have been designed
and simulated with the SPICE program using 0.18 µm CMOS process parameters to validate the
functionality and workability of the new circuits.

Keywords: shadow filter; differential difference transconductance amplifier; multiple-input MOS
technique; analog filter

1. Introduction

The universal filters are the systems that can realize several filtering functions into the
same topology such as low-pass (LP), high-pass (HP), band-pass (BP), band-stop (BS), and
all-pass (AP) filters, usually with second-order transfer functions [1–5]. These second-order
filters can be applied for three-way high-fidelity loud-speakers, phase-locked loops, and
high-order filters [6–8]. The filters with orthogonal control of the natural frequency and
the quality factor are usually required because it is easy to design the required operating
frequency and the required quality factor.

The shadow filter was first introduced in [9]. It consists of a conventional universal
filter with LP and BP outputs, summing circuit, and an external amplifier. The output
signal of the LP filter is amplified by the external amplifier and fed back to the summing
circuit at the input of the universal filter. The adjustable gain of the amplifier can be used
to modify the natural frequency and the quality factor of the universal filters, which is
valuable for trimming the parameters of filters when non-ideal effects are occurred. The
concept of the shadow filter in [9] was developed next to obtain both modification of the
natural frequency and the quality factor with an external amplifier [10].

There are many shadow filters (also known as frequency-agile filters) realized us-
ing variant active elements available in the literature [11–20]. In [11–18], current-mode
(CM) shadow filters have been reported whereas in [19–30] voltage-mode (VM) shadow
filters have been introduced. This paper is focused on the VM filters which offer high-
input and low-output impedances, electronic tuning ability, and use grounded passive
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components. The VM shadow filters using active elements such as operational trans-
resistance amplifier (OTRA) [19], current-feedback operational amplifier (CFOA) [20,21],
and differential-difference current conveyor (DDCC) [22] have been previously introduced
in literature. However, the circuits in [19–22] don’t provide an electronic tuning ability
of the natural frequency and the quality factor. The shadow filters employing voltage
differencing transconductance amplifier (VDTA) [23–27], voltage differencing gain ampli-
fier (VDGA) [28], voltage differencing differential difference amplifier (VDDDA) [29], and
operational transconductance amplifier (OTA) [30] offer an electronic tuning ability and
high-input impedance, which is advantageous for VM circuits. However, these active filters
were supplied with relatively high voltages, namely, ±0.9 V in [23,29], ±1 V in [24,25,27],
±1.5 V in [26], and ±1.8 V in [30].

In this paper a new voltage-mode shadow filters using low-voltage and low-power
multiple-input differential difference transconductance amplifiers (MI-DDTA) have been
proposed. The MI-DDTA offers multiple-input addition and subtraction of voltages,
which is possible by using the multiple-input gate-driven MOS transistor (MIGD MOST)
technique [31–36]. The proposed filters offer high-input and low output impedance
which is required for cascading in voltage-mode circuits. The natural frequency and
the quality factor can be controlled electronically. The proposed circuits can work with
±0.5 V supply and they have been designed and simulated with SPICE, using 0.18 µm
CMOS process parameters to verify the functionality and workability of the new circuits.

It is worth noting that the DDTAs using multiple-input bulk-driven MOST technique
have been proposed already in [37–39]. The DDTAs in [37,38] use a 0.5 V of supply
voltage, and the DDTA in [39] uses a 0.3 V of supply voltage. These DDTAs consume
ultra-low power in the range of nano watt; however, they are suitable for applications
operating with limited bandwidth in the range of a few hundred Hz like applications in
biomedical systems.

2. Proposed Circuit
2.1. Proposed MI-DDTA

Figure 1a shows the electrical symbol of the MI-DDTA. The low-frequency characteris-
tics of the device are given by:

Vw = Vy+1 + Vy+2 −Vy−1 −Vy−2
Io = gmVw

}
(1)

In brief, the operation of the circuit could be characterized as follows: the voltage at
the low-impedance output w is a sum of two differential input voltages Vy1 = Vy+1 −Vy−2
and Vy2 = Vy+2 − Vy−1. The output current Io at the high-impedance output o is equal
to the product of Vw, and a transconductance gain gm, namely, the second equation of
(1) describes a voltage-controlled current source. The CMOS structure of the proposed
MI-DDTA is shown in Figure 1b. It consists of a differential difference amplifier (DDA)
with unity gain feedback, followed by a transconductance amplifier (TA).

The unity gain DDA consists of a differential stage based on the flipped voltage follower
M1-M5 that allowed the minimum voltage supply to be as low as the sum of one gate-
source (VGS-M3) and one drain source (VDS-M5) voltage, i.e., VDDmin = VGS-M3 + VDS-M5; hence,
the low voltage supply capability is guaranteed. To increase the number of inputs of the
differential pair M1 and M2, the multiple-input gate-driven MOS transistor (MI-GD-MOST)
technique is used [31–36]. This multiple-input increase the arithmetic operation capability of
the DDTA circuit.
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Figure 1. Proposed MI-DDTA: (a) the electrical symbol and (b) possible CMOS implementation. 
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The symbol of the MI-GD-MOST and its implementation is shown in Figure 2. The
arbitrary number of inputs V1, . . . Vn are simply obtained by parallel connection of the input
capacitor CG and two anti-parallel MOS transistors ML operating in cutoff region, hence
creating high resistance value with minimum occupied chip area. These high resistances
are essential for proper DC operation of the circuit while the input capacitors ensure the
AC path for the input signals. The second stage of the unity gain DDA is created by
class-AB stage M6, M7 and high resistance RMOS. This RMOS is also created by two cut-off
transistors ML, and ensures the proper DC bias current of this output stage, while the
capacitor C ensures the AC path for the signal; hence a simple class-AB stage is obtained.
The compensation capacitor Cc ensure the stability of the DDA circuit.

β =
α·gm1,2(rds1,2

∣∣∣∣rds4,5)(gm6 + gm7)(rds1,2
∣∣∣∣rds4,5)

1 + α·gm1,2(rds1,2
∣∣∣∣rds4,5)(gm6 + gm7)(rds1,2

∣∣∣∣rds4,5)
(2)

where β is the voltage gain of the capacitive voltage divider, at the gates of M1 and
M2, which neglecting the impact of the parasitic capacitances of MOS transistor, can be
approximated as:

α ∼=
CG1

∑n
i=0 CGi

(3)

where n is the number of differential inputs of the MI- DDTA (note that one more capacitor
CG0 is used in feedback connection). Assuming n = 2 and CG0 = CG1 = CG2 results in α = 1/3.
The output resistance seen at the w terminal, Rw, is given by:

Rw ∼=
1

α·gm1,2(rds1,2
∣∣∣∣rds4,5)(gm6 + gm7)

(4)
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Note, that both the low-frequency gain β, as well as the output resistance Rw, are
deteriorated by the input capacitive divider. However, thanks to the two-stage architecture
of the internal OTA, used to create the MI-DDTA, and class AB operation, both parameters
can achieve acceptable values.

The input capacitance seen from a single y terminal, for identical capacitances CG,
which are much larger than parasitic capacitances of an MOS transistor, is:

Cy ∼=
2
3

CG (5)

The gain bandwidth product (GBW) of the internal OTA, M1–M7, which is approxi-
mately equal to the 3-dB frequency of the gain β, depends on the transconductance of the
input differential stage and the compensation capacitor CC:

GBW =
α·gm1,2

Cc
(6)

The transconductance stage is realized using the mirror topology M8–M16. The struc-
ture employs the self-cascode connections M10c–M16c in order to increase the output resis-
tance and the gain of the TA. The current ISET can be used to regulate the transconductance
of the TA, which in the weak inversion region, with unity-gain current mirrors, is given by:

gm =
ISET

npUT
(7)

where np is the subthreshold slope factor for a p-channel MOS transistor and UT is the
thermal potential.

The output resistance of the TA, i.e., the resistance seen from its o output, Ro, can be
approximated as:

Ro ∼= (gm10rds10rds10c)||(gm15rds15rds15c) (8)

and its DC voltage gain ATA is given by:

ATA = gmRo (9)

The parasitic poles associated with internal nodes of the TA are located well above
the GBW product of the TA, consequently, the GBW product depends on the loading
capacitance at the o terminal CLTA, and is given by:

GBWTA =
gm

CLTA
(10)

2.2. Proposed Shadow Filters

Figure 3a shows the block diagram of the shadow filter [10] that has been used to
realize the first proposed shadow filter as shown in Figure 3b. The DDTA1, DDTA2 along
with capacitors C1 and C2 realize the 2nd-order filter while DDTA3 along with resistor
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R1 realize the amplifier (A). The inverting high-pass (HP) and band-pass (BP) responses
are obtained at the VHP and VBP1 outputs, respectively, while VLP, VBP2, and VBS
provide non-inverting low-pass (LP), BP, and band-stop (BS) responses. It should be noted
that the input Vin possesses high impedance and outputs VHP, VBP2, and VBS possess
low impedance while the output VLP needs the buffer circuit if low-impedance load is
connected. The outputs VLP and VHP are summed and amplified. Using (1) and nodal
analysis, the transfer functions of LP, HP, BP and BS filters can be expressed by:

VLP
Vin

=
gm1gm2

(
1

1+gm3R1

)
s2C1C2 + sC2gm1

(
1

1+gm3R1

)
+ gm1gm2

(11)

−VHP
Vin

=
s2C1C2

(
1

1+gm3R1

)
s2C1C2 + sC2gm1

(
1

1+gm3R1

)
+ gm1gm2

(12)

VBP2

Vin
=
−VBP1

Vin
=

sC2gm1

(
1

1+gm3R1

)
s2C1C2 + sC2gm1

(
1

1+gm3R1

)
+ gm1gm2

(13)

VBS
Vin

=
s2C1C2

(
1

1+gm3R1

)
+ gm1gm2

(
1

1+gm3R1

)
s2C1C2 + sC2gm1

(
1

1+gm3R1

)
+ gm1gm2

(14)

where gm3R1 = A. The gain A can be regulated by gm3, with constant R1, or by regulating
R1 with constant gm3.
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The natural frequency (ωo) and the quality factor (Q) are given by:

ωo =

√
gm1gm2

C1C2
(15)

Q = (1 + A)

√
gm2C1

gm1C2
(16)

From (15), the parameter ωo can be controlled by gm1 = gm2 and from (16), the param-
eter Q can be controlled by A (i.e., regulating gm3 with constant R1) while maintaining
gm1 = gm2 and C1 = C2. Thus, the parameters ωo and Q can be controlled electronically.

From (11)–(14), increasing the parameter Q will decrease the passband of LP and HP
filters by 1/(1 + A), whereas the gain of the BP filter will be constant.

It should be noted from (16) that the parameter Q can be increased if A > 1. When the
amplifier inputs are swapped (i.e., connecting the y−1-terminal to VLP and the y+1-terminal
to VHP), the parameter Q will be proportional to (1− A). In this case 0 < A < 1 is used.

The block diagram of the second proposed shadow filter is shown in Figure 4a. In
this system two amplifiers A1 and A2 are used to amplify the output signals VBP and VLP,
respectively. The proposed filter, employing four MI-DDTAs, two grounded capacitors, and
one resistor is shown in Figure 4b. The DDTA1 and DDTA2, along with capacitors C1 and
C2 are used to realize the 2nd order filter while the resistor R1 along with the DDTA1 and
DDTA2, respectively, are used to realize the amplifiers A1 and A2. The non-inverting LP
and BP responses are obtained at the VLP1 and VBP2 outputs, respectively, while VLP2, VHP,
and VBP1 provide inverting LP, HP, and BP responses. It should be noted that the input Vin
possesses high impedance while the outputs VLP2, VHP, and VBP2 possess low impedance.
The output VBP1 is amplified by A1 using DDTA3 and resistor R1 and the output VLP1 is
amplified by A2 using DDTA4 and the same resistor R1.

Using (1) and nodal analysis, the transfer function of the second proposed filter in
Figure 4b can be expressed by:

VLP1

Vin
=
−VLP2

Vin
=

gm1gm2

s2C1C2 + sC2gm1(1− gm3R1) + gm1gm2(1− gm4R1)
(17)

−VHP
Vin

=
s2C1C2

s2C1C2 + sC2gm1(1− gm3R1) + gm1gm2(1− gm4R1)
(18)

VBP2

Vin
=
−VBP1

Vin
=

sC2gm1

s2C1C2 + sC2gm1(1− gm3R1) + gm1gm2(1− gm4R1)
(19)

where gm3R1 = A1 and gm4R1 = A2. From (17)–(19), they are valid for A1 < 1 and A2 < 1.
The natural frequency of the filter and its quality factor can be expressed as:

ωo =
√

1− A2

√
gm1gm2

C1C2
(20)

=

√
1− A2

1− A1

√
gm2C1

gm1C2
(21)

From (20), the parameter ωo can be controlled by A2 through adjusting gm4 or by
adjusting gm1 = gm2. However, adjusting the parameter ωo by A2 affects the parameter
Q. The parameter Q can be controlled by A1 without affecting the parameter ωo through
adjusting gm3. From (17)–(20), adjusting the parameter ωo will change the passband of LP
and BP filters whereas the passband of HP filter is constant.
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2.3. Non-Idealities Analysis

The non-idealities of DDTA can be considered as

Vw = β+j1Vy+1 + β+j2Vy+2 − β−j1Vy−1 − β−j2Vy−2
Io = gmnjVw

}
(22)

where β+j1 = 1− ε+j1v and ε+j1v(
∣∣ε+j1v

∣∣� 1) denote the voltage tracking error from Vy+1
to Vw of the j-th DDTA, β+j2 = 1− ε+j2v and ε+j2v(

∣∣ε+j2v
∣∣� 1) denote the voltage tracking

error from Vy+2 to Vw of the j-th DDTA, β−j1 = 1− ε−j1v and ε−j1v (
∣∣ε−j1v

∣∣ � 1) denote
the voltage tracking error from Vy−1 to Vw of the j-th DDTA, and β−j2 = 1− ε−j2v and
ε−j2v (

∣∣ε−j2v
∣∣� 1) denote the voltage tracking error from Vy−1 to Vw of the j-th DDTA, and
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gmnj is the frequency-dependent transconductance that typically determined the operation
frequency ωo [40]. The non-ideal of transconductance gmnj can be expressed as [41,42].

gmnj(s) ∼= gmj
(
1− µjs

)
(23)

The non-ideal first transfer function of the proposed shadow filter in Figure 3a can be
expressed by:

VLP
Vin

=
gmn1gmn2β−22β−32

(
1

1+gm3R1β−11β+22

)
s2C1C2 + sC2gmn1β−21

(
1

1+gm3R1β−11β+22

)
+gmn1gmn2β−31

(
β+21+gm3R1β+11β+22

1+gm3R1β−11β+22

)
(24)

−VHP
Vin

=
s2C1C2β−22

(
1

1+gm3R1β−11β+22

)
s2C1C2 + sC2gmn1β−21

(
1

1+gm3R1β−11β+22

)
+gmn1gmn2β−31

(
β+21+gm3R1β+11β+22

1+gm3R1β−11β+22

)
(25)

VBP2

Vin
=
−VBP1

Vin
=

sC2gmn1β−22

(
1

1+gm3R1β−11β+22

)
s2C1C2 + sC2gmn1β−21

(
1

1+gm3R1β−11β+22

)
+gmn1gmn2β−31

(
β+21+gm3R1β+11β+22

1+gm3R1β−11β+22

)
(26)

where gmn3R1 = A

ωo =

√
gmn1gmn2β−31

C1C2

(
β21+ + gmn3R1β+11β22+

1 + gmn3R1β−11β22+

)
(27)

Using (23), D(s) of the transfer functions can be rewritten as:

Q =
(1 + gmn3R1β−11β+22)

β−21

√
C1gmn2β−31

C2gmn1

(
β21+ + gmn3R1β+11β22+

1 + gmn3R1β−11β22+

)
(28)

where:
s2C1C2

(
1− C2gm1µ1β−21(B)−gm1gm2µ1µ2β−31(C)

C1C2

)
+sC2gm1β−21(B)(1

− (gm1gm2β−31µ1+gm1gm2β−31µ2)(C)
C2gm1β−21(B)

)
+ gm1gm2β−31(C)

(29)

where:
B =

1
1 + gm3R1β−11β+22

, C =
β+21 + gm3R1β+11β+22

1 + gm3R1β−11β+22

The non-ideality of transconductance gmn can be neglected by satisfying the follow-
ing condition:

C2gm1µ1β−21(B)− gm1gm2µ1µ2β−31(C)
C1C2

� 1 (30)

(gm1gm2β−31µ1 + gm1gm2β−31µ2)(C)
C2gm1β−21(B)

� 1 (31)
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The non-ideal transfer function of the second proposed shadow filter in Figure 4b can
be expressed by

VLP1
Vin

=
−VLP2

Vin
=

gmn1gmn2β−21β−22

s2C1C2 + sC2gmn1(β−21 − gmn3R1β+31β+22)

+gmn1gmn2β−21(β+21 − gmn4R1β−41β+22)

(32)

−VHP
Vin

=
s2C1C2β−22

s2C1C2 + sC2gmn1(β−21 − gmn3R1β+31β+22)

+gmn1gmn2β−21(β+21 − gmn4R1β−41β+22)

(33)

VBP2

Vin
=
−VBP1

Vin
=

sC2gmn1β−22

s2C1C2 + sC2gmn1(β−21 − gmn3R1β+31β+22)

+gmn1gmn2β−21(β+21 − gmn4R1β−41β+22)

(34)

where gmn3R1 = A1 and gmn4R1 = A2

ωo =

√
(β+21 − gmn4R1β−41β+22)

gmn1gmn2β−21

C1C2
(35)

Q =

√
β+21 − gmn4R1β−41β+22

β−21 − gmn3R1β−31β+22

√
C1gmn2β−21

C2gmn1
(36)

Using (23), D(s) of the transfer functions can be rewritten as

s2C1C2

(
1− C2gm1µ1(D)−gm1gm2β−21µ1µ2(E)

C1C2

)
+sC2gm1(D)

(
1− gm1gm2β−21µ1(E)+gm1gm2β−21µ2(E)

C2gm1(D)

)
+gm1gm2β−21(E)

(37)

where D = β−21 − gmn3R1β+31β+22, and E = β+21 − gmn4R1β−41β+22. The non-ideality of
the transconductance gmn can be neglected by satisfying the following condition:

C2gm1µ1(D)− gm1gm2β−21µ1µ2(E)
C1C2

� 1 (38)

gm1gm2β−21µ1(E) + gm1gm2β−21µ2(E)
C2gm1(D)

� 1 (39)

Considering the parasitic parameters of DDTA by letting y-terminals possess very high
impedance levels, which can be neglected, low parasitic resistance Rw at w-terminal and
parallel of parasitic capacitance Co and resistance Ro at o-terminal. From Figures 3b and 4b,
the parasitic parameters Co1 and Ro1 of DDTA1 are parallel with C1, parasitic parameters
Co2 and Ro2 of DDTA2 are parallel with C2, and parasitic parameters Co3 and Ro3 of DDTA2
are parallel with R1. These parasitic parameters can be neglected by choosing appropriately
values such as gmj � 1/Roj, Cj � Coj, and R1 � Roj, where j = 1, 2, 3 of DDTAj.

3. Simulation Results

The proposed shadow filters were simulated using SPICE. The MI-DDTA as shown in
Figure 1a was designed using a 0.18 µm CMOS technology and the transistor aspect ratios
are shown in Table 1. The power supply was ±0.5 V.
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Table 1. Parameters of the components of MI-DDTA.

Transistor W/L (µm/µm)

DDA
M1, M2 90/3

M3 180/3
MB, M4, M5 30/3

M6 60/3
M7 150/3

ML (RMOS) 4/5
CG = 0.5 pF, CC = CB = 2.6 pF

IB = 1 µA
TA

M8, M9, M15, M16, MB1, M14c 30/1
M10, M11, M12, M13 20/1

M10c, M11c, M12c, M13c 10/1
M15c, M16c, MB1c 15/1

M14 60/1

Figure 5a shows the DC transfer characteristic Vw against Vy+1 and Vy−1 of the MI-
DDTA while (b) shows the AC transfer characteristic and −3 dB bandwidth of Vw/Vy+1
and Vw/Vy−1 with load capacitance of 10 pF, the −3 dB bandwidth is around 483.3 kHz
and the low frequency gain is −0.016 dB. It is notable the capability of operation in a wide
range of the input voltages. Note, that both, the differential, as well as common-mode
range of the input differential amplifier M1–M2 is increased 1/α times, thanks to the input
capacitive divider.
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Figure 6 shows the small-signal transconductance of the transconductance stage,
against the input voltage Vw , for different ISET (Figure 6a), and against ISET (Figure 6b). It
is worth noting that although the input range is sufficient for the proposed applications,
this range, if needed, could be simply increased using a linearization technique like the
source degeneration that results in increased dynamic rang of the system. The parasitic
parameters of DDTA are Ry = 6.28 GΩ, Rw = 540 Ω, Ro = 11.9 MΩ, and Co = 33.67 fF.
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Figure 6. Transconductance Gm with different values of ISET : (a) Gm −Vw, (b) Gm − ISET .

The first proposed shadow filter was designed with C1 = C2 = 3.3 nF and R1 = 46.5 kΩ.
Note that these passive values are sufficient to avoid the impact of parasitic effects. The
transconductance gm3 adjusted by the current ISET3 was used to control the amplifier A.
The bias currents ISET1 and ISET2 were used to control gm1 and gm2, respectively.

The first simulation was performed with A = 0, by setting the bias current ISET3 = 0
and ISET1 = ISET2 = 1 µA (gm = 21.5 µS). This setting resulted in natural frequency (f o) of
1.036 kHz and the quality factor (Q) of 1.

The magnitude responses of the LP, HP, BP, and BS filters are shown in Figure 7.
Figure 8 shows the magnitude responses of the BP filter when the bias currents ISET1 = ISET2
are varied. This result confirms that the natural frequency of the shadow filter can be
electronically controlled. Figure 9 shows the magnitude frequency responses when the
amplifier A is used to set the quality factor Q equal to 1.0, 2.0, 3.2, 3.9, and 4.6. Figure 9c
shows that the quality factor of the BP filter can be controlled by the amplifier A (A > 1)
with the passband gain equal to 0 dB while the passband gain of the LP, HP and BS filters
in Figure 9a–c respectively, will decrease when the quality factor is increased.
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The second proposed shadow filter was designed with C1 = C2 = 3.3 nF and R1 = 46.5 kΩ.
The bias currents ISET1 and ISET2 were used to adjust gm1 and gm2, respectively. The gm3 that
was adjusted by ISET3 and gm4 adjusted by ISET4 were used to control the amplifiers A1 and
A2, respectively. The first simulation was performed with A2 = 0 by setting the bias currents
ISET4= 0, ISET1 = ISET2 = 1 µA (gm = 21.5 µS), while the amplifier A1 was used to control the
parameter Q. The simulated magnitude responses of the LP, HP, and BP filters with Q = 1.1,
2.1, 3.6, 4.5, 10.0 are shown in Figure 10. This result confirmed that the parameter Q can be
controlled by A1, without affecting the parameter ωo.
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Figure 10. Simulated magnitude frequency responses of the second shadow filter with setting the
quality factor by the amplifier A1, with A2 = 0 (a) LP, (b) HP, and (c) BP.

Figure 11 shows the simulated magnitude frequency responses of the LP, HP, and BP
filters when the amplifier A2 gain was regulated by gm4 and the amplifier A1 was used to
control the parameter Q = 1. This result confirmed that when the parameter ωo is varied by
the amplifier A2, the passband gain of the LP and BP filter is changing while the passband
gain of the HP filter is constant.
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Figure 11. Simulated magnitude frequency responses of the second shadow filter with setting the
natural frequency by A2, while A1 is used to adjust Q = 1, (a) LP filter, (b) HP filter, (c) BP filter.

Figure 12a shows the simulated total harmonic distortion (THD) of the LP filter for
f = 100 Hz. The amplifiers A1 and A2 were not active (ISET3 = ISET4 = 0 A). It can be noticed
that THD was less than 1.2% for Vin < 250 mVpp and its transient response is shown in
Figure 12b. Figure 12c shows the simulated third intermodulation distortion (IMD3) of the
BP filter for a two-tone test, with two closely spaced tones of f 1 = 0.9 kHz and f 2 = 1.1 kHz.
The IMD3 was less than 1.5% for the input amplitude up to 40 mVpp.

The simulated magnitude responses of the LP, HP, and BP filters for process, voltage,
and temperature (PVT) corners were investigated. Figure 13a–c show respectively the
results of Monte Carlo (MC) analysis, were variations of the threshold voltages of MOS
transistors by 10% (LOT tolerance), supply voltages by +/− 10% and temperature from
−10 ◦C to 70 ◦C were assumed. As it can be noticed, the proposed filter is robust under the
assumed PVT variations.

Finally, Table 2 provides a comparison of the proposed filters with previously pub-
lished shadow filters in [22,23,26,29,30]. The proposed filters provide lower power con-
sumption, as compared with [22,23], lower output impedance, as compared with [26,30]
(except the output impedance of the LP filter in Figure 3b), larger number of low-impedance
nodes, as compared with [29], and lower supply voltage, as compared with [23,26,29,30].
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Figure 12. Simulated distortion of first proposed shadow filter: (a) THD of the LP filter, (b) the transient
response of the LPF with THD lesser than 1.2 % for Vin =250 mVpp, and (c) IMD3 of the BP filter.

Table 2. Comparison of the Proposed Shadow Filters with Previous Works.

Parameters [22] Figure 4b [23] [26] [29] This Work
Figure 3b

This Work
Figure 4b

Technology [µm] 0.35 0.18 0.18 0.18 0.18 0.18
Supply voltage [V] ±0.5 ±0.9 ±1.5 ±0.9 ±0.5 ±0.5

No. of ABB 4-DDCC 1-VDTA 4-VDTA 3-VDDA 3-DDTA 4-DDTA
No. of R & C 5 + 2 0 + 2 0 + 2 1 + 2 1 + 2 1 + 2

High input impedance Yes Yes Yes Yes Yes Yes
Low output impedance No No No HP, AP HP, BP, BS Yes
Availability of responses LP, HP, BP LP, BP LP, BP LP, HP, BP, BS, AP LP, HP, BP, BS LP, HP, BP

Electronic control of ωo and Q No Yes Yes Yes Yes Yes
Power consumption [µW] 184 3620 - - 24.9 30

THD [%] - - - 1@200 mVpp 1.14@250 mVpp
IRN [µV/

√
Hz] - - - 62.6

Dynamic rang [dB] - - - 62.9
Verification of result Sim./Exp. Sim. Sim. Sim./Exp. Sim.
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Figure 13. Simulated magnitude responses of the first proposed shadow filter: (a) process corner,
(b) voltage corner, and (c) temperature.

4. Conclusions

This paper presents new voltage-mode shadow filters with single-input multiple-
output topology, using low-voltage low-power multiple-input differential difference
transconductance amplifiers. The multiple-input DDTA can be easily realized using
MIGD-MOST technique. The proposed filters offer high-input impedance and most
of the output terminals offer low-impedance. The natural frequency and the quality
factor of the filters can be electronically and independently controlled. The impact of
the non-idealities of the DDTA on the performance of the proposed shadow filter is
studied. The SPICE simulation results using 0.18 µm CMOS process from TSMC is given
to validate the workability of the new circuits.
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