A THD-Based Fault Protection Method Using MSOGI-FLL Grid Voltage Estimator
Abstract
:1. Introduction
2. Protection Algorithm
2.1. Proposed System
- Scenario I. A fault defined as F3 occurs at L3. Then, PD5 detects and isolates the fault, which gives the chance for the DGs to supply the loads by its own.
- Scenario II. A fault labeled as F2 happens at DL2. PD4 is in charge of detecting and isolating the fault, while DL1 remains connected to the system, supplying Load1.
- Scenario III. A fault defined as F1 occurs inside Zone1. In this case, PD1 detects and isolates the fault, which allows the rest of the system to remain connected.
2.2. Fault Classification Algorithm
2.3. Finite State Machine
3. MSOGI-FLL THD Measurement Method
4. Results and Discussion
4.1. DLs Protection Test
4.1.1. Three-Phase Fault (3PH-G) at F3
4.1.2. Phase-to-Phase Fault (2PH) at F2
4.2. DGs Zones Protection Test
4.3. Comparison with Different Protection Methods
4.4. Simplification of the MSOGI Structure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ates, Y.; Uzunoglu, M.; Karakas, A.; Boynuegri, A.R. The Case Study Based Protection Analysis for Smart Distribution Grids Including Distributed Generation Units. In Proceedings of the 12th IET International Conference on Developments in Power System Protection (DPSP 2014), Copenhagen, Denmark, 31 March–3 April 2014; pp. 1–5. [Google Scholar]
- Kennedy, J.; Ciufo, P.; Agalgaonkar, A. A review of protection systems for distribution networks embedded with renewable generation. Renew. Sustain. Energy Rev. 2016, 58, 1308–1317. [Google Scholar] [CrossRef] [Green Version]
- Norshahrani, M.; Mokhlis, H.; Abu Bakar, A.H.; Jamian, J.J.; Sukumar, S. Progress on protection strategies to mitigate the impact of renewable distributed generation on distribution systems. Energies 2017, 10, 1864. [Google Scholar] [CrossRef] [Green Version]
- Meskin, M.; Domijan, A.; Grinberg, I. Impact of distributed generation on the protection systems of distribution networks: Analysis and remedies–review paper. IET Gener. Transm. Distrib. 2020, 14, 5944–5960. [Google Scholar] [CrossRef]
- Yeh, C.C.; Chen, C.S.; Ku, T.T.; Lin, C.H.; Hsu, C.T.; Chang, Y.R.; Lee, Y.D. Design of special protection system for an offshore island with high PV penetration. In Proceedings of the IEEE/IAS 52nd Industrial and Commercial Power Systems Technical Conference (I&CPS), Detroit, MI, USA, 1–5 May 2016; pp. 1–7. [Google Scholar]
- Buigues, G.; Dysko, A.; Valverde, V.; Zamora, I.; Fernández, E. Microgrid Protection: Technical challenges and existing techniques. In Proceedings of the International Conference on Renewable Energies and Power Quality, Bilbao, Spain, 20–22 March 2013; pp. 222–227. [Google Scholar]
- Pei, X.; Chen, Z.; Wang, S.; Kang, Y. Overcurrent protection for inverter-based distributed generation system. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 2328–2332. [Google Scholar]
- Senarathna, T.S.S.; Udayanga Hemapala, K.T.M. Review of adaptive protection methods for microgrids. AIMS Energy 2019, 7, 557–578. [Google Scholar] [CrossRef]
- Colson, C.M.; Nehrir, M.H. A review of challenges to real-time power management of microgrids. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; IEEE: New York, NY, USA; pp. 1–8. [Google Scholar]
- Gururajapathy, S.S.; Mokhlis, H.; Illias, H.A. Fault location and detection techniques in power distribution systems with distributed generation: A review. Renew. Sustain. Energy Rev. 2017, 74, 949–958. [Google Scholar] [CrossRef]
- Jones, D.; Kumm, J.J. Future Distribution Feeder Protection Using Directional Overcurrent Elements. IEEE Trans. Ind. Appl. 2014, 50, 1385–1390. [Google Scholar] [CrossRef]
- Zeineldin, H.H.; Sharaf, H.M.; Ibrahim, D.K.; El-Zahab, E.E.-D.A. Optimal Protection Coordination for Meshed Distribution Systems with Dg Using Dual Setting Directional Over-Current Relays. IEEE Trans. Smart Grid 2015, 6, 115–123. [Google Scholar] [CrossRef]
- Chilvers, I.; Jenkins, N.; Crossley, P. Distance Relaying of 11 kv Circuits to Increase the Installed Capacity of Distributed Generation. IEE Proc. Gener. Transm. Distrib. 2005, 152, 40–46. [Google Scholar] [CrossRef]
- Uthitsunthorn, D.; Kulworawanichpong, T. Distance Protection of a Renewable Energy Plant in Electric Power Distribution Systems. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010; pp. 1–6. [Google Scholar]
- Dewadasa, M.; Ghosh, A.; Ledwich, G. Protection of Microgrids Using Differential Relays. In Proceedings of the Power Engineering Conference (AUPEC), Brisbane, Australia, 25–28 September 2011; Australasian Universities: Brisbane, Australia, 2011; pp. 1–6. [Google Scholar]
- Ustun, T.S.; Ozansoy, C.; Zayegh, A. Differential Protection of Microgrids with Central Protection Unit Support. In Proceedings of the IEEE 2013 Tencon—Spring, Sydney, Australia, 17–19 April 2013; pp. 15–19. [Google Scholar]
- Al-Nasseri, H.; Redfern, M.; O’gorman, R. Protecting Micro-Grid Systems Containing Solid-State Converter Generation. In Proceedings of the International Conference on Future Power Systems, Amsterdam, The Netherlands, 18 November 2005; p. 5. [Google Scholar]
- Al-Nasseri, H.; Redfern, M.; Li, F. A Voltage Based Protection for Micro-Grids Containing Power Electronic Converters. In Proceedings of the Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006; p. 7. [Google Scholar]
- Brahma, S.M.; Girgis, A.A. Development of Adaptive Protection Scheme for Distribution Systems with High Penetration of Distributed Generation. IEEE Trans. Power Deliv. 2004, 19, 56–63. [Google Scholar] [CrossRef]
- Ma, J.; Mi, C.; Wang, T.; Wu, J.; Wang, Z. An Adaptive Protection Scheme for Distributed Systems with Distributed Generation. In Proceedings of the Power and Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011; pp. 1–6. [Google Scholar]
- Al-Nasseri, H.; Redfern, M.A. Harmonics content based protection scheme for micro-grids dominated by solid state converters. In Proceedings of the 12th International Middle-East Power System Conference, Aswan, Egypt, 12–15 March 2008; pp. 50–56. [Google Scholar]
- Matas, J.; Martín, H.; de la Hoz, J.; Abusorrah, A.; Al-Turki, Y.; Alshaeikh, H. A new THD measurement method with small computational burden using a SOGI-FLL grid monitoring system. IEEE Trans. Power Electron. 2019, 35, 5797–5811. [Google Scholar] [CrossRef]
- Yazdani, A.; Iravani, R. Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications; John Wiley & Sons: Mississauga, ON, Canada, 2010. [Google Scholar]
- Hong, P.; Turk, M.; Huang, T.S. Gesture modeling and recognition using finite state machines. In Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580), Grenoble, France, 28–30 March 2000; IEEE: New York, NY, USA; pp. 410–415. [Google Scholar]
- Silos, Á.; Señís, A.; Martín de Pozuelo, R.; Zaballos, A. Using IEC 61850 goose service for adaptive ANSI 67/67N protection in ring main systems with distributed energy resources. Energies 2017, 10, 1685. [Google Scholar] [CrossRef] [Green Version]
- Institute of Electrical and Electronics Engineers. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems; IEEE: New York, NY, USA, 2014; pp. 1–29. [Google Scholar] [CrossRef]
- Mostafa Bakkar, S.; Bogarra, F.; Córcoles, J.I. P.O.12.2: Technical Requirements of Wind Power and Photovoltaic Facilities (Draft); Red Electra: Madrid, Spain, 2008. [Google Scholar]
- Bollen, M.H. Understanding power quality problems. In Voltage Sags and Interruptions; IEEE Press: Piscataway, NJ, USA, 2000. [Google Scholar]
- Serban, I.; Cespedes, S.; Marinescu, C.; Azurdia-Meza, C.A.; Gomez, J.S.; Hueichapan, D.S. Communication requirements in microgrids: A practical survey. IEEE Access 2020, 8, 47694–47712. [Google Scholar] [CrossRef]
- IEC 61850 Communication Protocol Manual; ABB Co.: Vasteras, Sweden, 2011; Available online: https://library.e.abb.com/public/ab3ac2f5fd194cfead887dad46b2f80e/1MRK511242-UEN_-_en_Communication_protocol_manual__IEC_61850__650_series__IEC.pdf?x-sign=GF1grtjcqVeQ29GX/yxkIFWphcq3LP1oYcGnabvPQLU2ldomz40xlj9dsiWpzTTw (accessed on 4 January 2023).
- Santoso, S.; McGranaghan, M.F.; Dugan, R.C.; Beaty, H.W. Electrical Power Systems Quality, 3rd ed.; McGraw-Hill Education: New York, NY, USA, 2012. [Google Scholar]
- Kusko, A. Power Quality in Electrical Systems; McGraw-Hill Education: New York, NY, USA, 2007. [Google Scholar]
- Rodríguez, P.; Luna, A.; Candela, I.; Mujal, R.; Teodorescu, R.; Blaabjerg, F. Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions. IEEE Trans. Ind. Electron. 2010, 58, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Kezunovic, M.; Ren, J.; Lotfifard, S. Design, Modeling and Evaluation of Protective Relays for Power Systems; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Van der Walt, H.L.; Bansal, R.C.; Naidoo, R. PV based distributed generation power system protection: A review. Renew. Energy Focus 2018, 24, 33–40. [Google Scholar] [CrossRef]
- Mirsaeidi, S.; Said, D.M.; Mustafa, M.W.; Habibuddin, M.H.; Ghaffari, K. An analytical literature review of the available techniques for the protection of micro-grids. Int. J. Electr. Power Energy Syst. 2014, 58, 300–306. [Google Scholar] [CrossRef]
- Baran, M.E.; Hooshyar, H.; Shen, Z.; Huang, A. Accommodating high PV penetration on distribution feeders. IEEE Trans. Smart Grid 2012, 3, 1039–1046. [Google Scholar] [CrossRef]
- Bakkar, M.; Bogarra, S.; Córcoles, F.; Iglesias, J. Overcurrent protection based on ANNs for smart distribution networks with grid-connected VSIs. IET Gener. Transm. Distrib. 2020, 15, 1159–1174. [Google Scholar] [CrossRef]
- He, J.; Liu, L.; Xu, Y.; Ding, F.; Zhang, D. A two-step protection algorithm for smart distribution systems with DGs. Int. Trans. Electr. Energy Syst. 2018, 28, e2506. [Google Scholar] [CrossRef]
- Shih, M.Y.; Conde, A.; Leonowicz, Z.; Martirano, L. An adaptive overcurrent coordination scheme to improve relay sensitivity and overcome drawbacks due to distributed generation in smart grids. IEEE Trans. Ind. Appl. 2017, 53, 5217–5228. [Google Scholar] [CrossRef]
- Mishra, P.; Pradhan, A.K.; Bajpai, P. Adaptive relay setting for protection of distribution system with solar PV. In Proceedings of the 2018 20th National Power Systems Conference (NPSC), Tiruchirappalli, India, 14–16 December 2018; IEEE: New York, NY, USA; pp. 1–5. [Google Scholar]
- Choi, J.H.; Nam, S.R.; Nam, H.K.; Kim, J.C. Adaptive protection schemes of Distributed Generation at distribution network for automatic reclosing and voltage sags. In Proceedings of the 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, 24–27 November 2008; IEEE: New York, NY, USA; pp. 810–815. [Google Scholar]
- Beheshtaein, S.; Cuzner, R.; Savaghebi, M.; Guerrero, J.M. A new harmonic-based protection structure for meshed microgrids. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–6. [Google Scholar]
- Code Composer Studio Users Guide. Texas Instruments. 2019. Available online: http://www.ti.com/tool/CCSTUDIO (accessed on 26 September 2022).
- FPU DSP Software Library User’s Guide; Texas Instruments, 2015; Available online: https://manualzz.com/doc/7519482/fpu-dsp-software-library-user-s-guide (accessed on 4 January 2023).
Protection Strategies | Advantages | Disadvantages | Communication Links | Cost |
---|---|---|---|---|
Directional Over Current Relay [11,12] |
|
| No | Expensive |
Distance Relays [13,14] |
|
| Yes | Reasonable |
Differential Relays [15,16] |
|
| Yes | Very Expensive |
Voltage-based Protection [17,18] |
|
| Yes | Expensive |
Adaptive Protection [19,20] |
|
| Yes | Expensive |
Harmonic-Based Methods (FFT) [21] |
|
| Yes | Reasonable |
Main Grid | MV Transformer (YNd11) | Distribution Lines | MV/LV Transformer (Dyn11) | DGs Rating | Load Rating | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
L3 | DL1 | DL2 | Load1 | Load2 | |||||||
Rated voltage 33 kV | Rated power 20 MVA | R | 0.16 Ω/km | R | 0.146 Ω/km | R | 0.127 Ω/km | Rated power 400 kVA | 320 kVA | 480 kW | 400 kW |
L | 0.109 H/km | L | 0.35 mH/km | L | 25 mH/km | ||||||
Rated voltage 33/11 kV | C | 0.31 F/km | C | 0.31 F/km | C | 0.31F/km | Rated voltage 11/0.42 kV | ||||
Length 4 km | Length 3 km | Length 1 km |
Parameter | Value |
---|---|
Differential current (pu) | 1.08 |
Biased characteristic (K) | 0.5 |
Current transformer ratio (CT) | 200:1 |
References | Protection Strategies | Trip Time | Advantages | Disadvantages |
---|---|---|---|---|
[38] | OC and ANN | 14 ms | Fast trip action, variable fault resistance | Communication problems, complex training process, not adaptable for network modifications. |
[39] | Multi-Terminal DR | 90 ms | Fast trip action, variable fault resistance | Communication problems. |
[40] | Multi-Agent System and OCR | 300 ms | No central controller | Communication problems. |
[41] | Centralize Controller and Linear Programming | 421 ms | No need for training, relay settings obtained simultaneously | Communication problems, more complex with large number of buses. |
[42] | Over Current and Voltage Based | Not specified | Can locate the fault either inside the circuit breaker protection zone or not | Communication problems, undesirable for schemes with inverter-interfaced DG where the fault current flow is minimal. |
[43] | THD | 20–50 ms | Acts like a directional relay with no need of a voltage transformer.. | Communication problems, validated only for three phase faults. |
Proposed method | MSOGI-THD | 7–10 ms | Fast tripping, variable fault locations, fault types, fault resistance, affordable computational burden. | Communication problems. |
Proposed method minimal | MSOGI-III-THD | 6.4 ms | The same merits of the proposed method before minimization. In addition, it is faster and a much affordable computational burden. | Communication problems. |
Approach | Number of Cycles (c) | Fault Detection Time (ms) | Fault Clearing Time (s) |
---|---|---|---|
MSOGI | 1788 | 7.0 | 0.3070 |
MSOGI-II | 1341 | 6.6 | 0.3066 |
MSOGI-III | 894 | 6.4 | 0.3064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Hanaineh, W.; Matas, J.; El Mariachet, J.; Xie, P.; Bakkar, M.; Guerrero, J.M. A THD-Based Fault Protection Method Using MSOGI-FLL Grid Voltage Estimator. Sensors 2023, 23, 980. https://doi.org/10.3390/s23020980
Al Hanaineh W, Matas J, El Mariachet J, Xie P, Bakkar M, Guerrero JM. A THD-Based Fault Protection Method Using MSOGI-FLL Grid Voltage Estimator. Sensors. 2023; 23(2):980. https://doi.org/10.3390/s23020980
Chicago/Turabian StyleAl Hanaineh, Wael, Jose Matas, Jorge El Mariachet, Peilin Xie, Mostafa Bakkar, and Josep. M. Guerrero. 2023. "A THD-Based Fault Protection Method Using MSOGI-FLL Grid Voltage Estimator" Sensors 23, no. 2: 980. https://doi.org/10.3390/s23020980
APA StyleAl Hanaineh, W., Matas, J., El Mariachet, J., Xie, P., Bakkar, M., & Guerrero, J. M. (2023). A THD-Based Fault Protection Method Using MSOGI-FLL Grid Voltage Estimator. Sensors, 23(2), 980. https://doi.org/10.3390/s23020980