High-Efficiency Plasma Source Using a Magnetic Mirror Trap for Miniature-Ion Pumps
Abstract
1. Introduction
2. Design, Simulation, and Experimental
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asadian, M.H.; Askar, S.; Shkel, A.M. An ultrahigh vacuum packaging process demonstrating over 2 millionQ-factor in MEMS vibratory gyroscopes. IEEE Sens. Counc. 2017, 1, 6. [Google Scholar] [CrossRef]
- Elßner, M. Vacuum quality evaluation for uncooled micro bolometer thermalimager sensors. ESREF 2014, 54, 1758–1763. [Google Scholar] [CrossRef]
- Kaajakaria, V.; Kiihamakia, J.; Oja, A.; Pietikainen, S.; Kokkala, V.; Kuisma, H. Stability of wafer level vacuum encapsulated single-crystal silicon resonators. Sens. Actuators A 2006, 130–131, 42–47. [Google Scholar] [CrossRef]
- Takigawa, R.; Iwanabe, K.; Shuto, T.; Takao, T.; Asano, T. Room-Temperature Hermetic Sealing by Ultrasonic Bonding with Au Compliant Rim. Jpn. J. Appl. Phys. 2014, 53, 06JM05. [Google Scholar] [CrossRef]
- Kariya, S.; Matsumae, T.; Kurashima, Y.; Takagi, H.; Hayase, M.; Higurashi, E. Bonding formation and gas absorption using Au/Pt/Ti layers for vacuum packaging. Microsyst. Nanoeng. 2022, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Benvenuti, C.; Chiggiato, P.; Cicoira, F.; L’Aminot, Y. Nonevaporable getter films for ultrahigh vacuum applications. JVST A 1998, 16, 148–154. [Google Scholar] [CrossRef]
- Mcgilligan, J.P.; Gallacher, K.; Griffin, P.F.; Paul, D.J.; Arnold, A.S.; Riis, E. Micro-fabricated components for cold atom. Rev. Sci. Instrum. 2022, 93, 091101. [Google Scholar] [CrossRef] [PubMed]
- Mcgehee, W.R.; Zhu, W.; Barker, D.S.; Westly, D.; Yulaev, A.; Klimov, N.; Agrawal, A.; Eckel, S.; Aksyuk, V.; Mcclelland, J.J. Magneto-optical trapping using planar optics. New J. Phys. 2021, 23, 013021. [Google Scholar] [CrossRef]
- Mcgilligan, J.P.; Moore, K.R.; Dellis, A.; Martinez, G.D.; De Clercq, E.; Griffin, P.F.; Arnold, A.S.; Riis, E.; Boudot, R.; Kitching, J. Laser cooling in a chip-scale platform. Appl. Phys. Lett. 2020, 17, 054001. [Google Scholar] [CrossRef]
- Boudot, R.; Mcgilligan, J.P.; Moore, K.R.; Maurice, V.; Martinez, G.D.; Hansen, A.; De Clercq, E.; Kitching, J. Enhanced observation time of magneto-optical traps using micro-machined non-evaporable getter pumps. Sci. Rep. 2020, 10, 16590. [Google Scholar] [CrossRef] [PubMed]
- Elvin, R.; Hoth, G.W.; Wright, M.; Lewis, B.; Mcgilligan, J.P.; Arnold, A.S.; Griffin, P.F.; Riis, E. Cold-atom clock based on a diffractive optic. Optics Express. 2019, 27, 38359–38366. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, T.; Kurihara, M.; Ohno, S.; Terashima, N.; Natsui, Y.; Kato, H.; Kato, Y.; Hashimoto, A.; Kikuchi, T.; Mase, K. Oxygen-free palladium/titanium coating, a novel nonevaporable getter coating with an activation temperature of 133 °C. J. Vac. Sci. Technol. 2018, A36, 051601. [Google Scholar] [CrossRef]
- Audi, M.; De Simon, M. Ion pump. Vacuum 1987, 37, 629–636. [Google Scholar] [CrossRef]
- Green, S.G.; Malhotra, R.; Gianchandani, Y.B. Sub-torr chip-scale sputter-ion pump based on a penning cell array architecture. JMS 2013, 22, 309–317. [Google Scholar] [CrossRef]
- Grzebyk, T.; Gorecka-Drzazga, A. Characterization of the ionization process inside a miniature glow-discharge micropump. Bull. Pol. Acad. Sci. Tech. Sci. 2018, 66, 173–178. [Google Scholar] [CrossRef]
- Knapkiewicz, P. Alkali vapor MEMS cells technology toward high-vacuum self-pumping MEMS cell for atomic spectroscopy. Micromachines 2018, 9, 405. [Google Scholar] [CrossRef] [PubMed]
- Grzebyk, T.; Knapkiewicz, P.; Szyszka, P.; Górecka-Drzazga, A.; Dziuban, J.A. MEMS ion-sorption high vacuum pump. PowerMEMS 2016, 773, 012047. [Google Scholar] [CrossRef]
- Grzebyk, T.; Górecka-Drzazga, A.; Dziuban, J.A. Glow-discharge ion-sorption micropump for vacuum MEMS. Sens. Actuators A Phys. 2014, 208, 113–119. [Google Scholar] [CrossRef]
- Grzebyk, T.; Szyszka, P.; Górecka-Drzazga, A. Magnetron-like miniature ion source. Vacuum 2018, 151, 167–174. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurashima, Y.; Motomura, T.; Yanagimachi, S.; Matsumae, T.; Watanabe, M.; Takagi, H. High-Efficiency Plasma Source Using a Magnetic Mirror Trap for Miniature-Ion Pumps. Sensors 2023, 23, 1040. https://doi.org/10.3390/s23021040
Kurashima Y, Motomura T, Yanagimachi S, Matsumae T, Watanabe M, Takagi H. High-Efficiency Plasma Source Using a Magnetic Mirror Trap for Miniature-Ion Pumps. Sensors. 2023; 23(2):1040. https://doi.org/10.3390/s23021040
Chicago/Turabian StyleKurashima, Yuichi, Taisei Motomura, Shinya Yanagimachi, Takashi Matsumae, Mitsuhiro Watanabe, and Hideki Takagi. 2023. "High-Efficiency Plasma Source Using a Magnetic Mirror Trap for Miniature-Ion Pumps" Sensors 23, no. 2: 1040. https://doi.org/10.3390/s23021040
APA StyleKurashima, Y., Motomura, T., Yanagimachi, S., Matsumae, T., Watanabe, M., & Takagi, H. (2023). High-Efficiency Plasma Source Using a Magnetic Mirror Trap for Miniature-Ion Pumps. Sensors, 23(2), 1040. https://doi.org/10.3390/s23021040