Dosimetric Study of Heat-Treated Calcium–Aluminum–Silicon Borate Dosimeter for Diagnostic Radiology Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. TL Dosimeter Synthesization
2.2. Scanning Electronic Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDS)
2.3. Irradiation Facilities
2.3.1. Secondary Standard Dosimetry Laboratory (SSDL)
2.3.2. Mammography
2.3.3. Computed Tomography (CT)
2.4. TL Reading and Annealing
3. Results and Discussion
3.1. TL Scanning Electronic Microscopy (SEM), Energy Dispersive X-ray Analysis (EDS)
3.2. TL Glow Curves of Samples
3.3. Dosimetric TL Properties
3.3.1. Dose Response and Dose–Response Linearity from SSDL Irradiation
3.3.2. Dose Linearity from Mammography
3.3.3. Dose Linearity from CT Irradiation
3.3.4. Reproducibility
3.3.5. Minimum Detectable Dose (MDD)
3.3.6. Energy Dependence
3.3.7. Fading
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donya, H. Thermoluminescence Dosimetry Technique for Radiation Detection Applications. In Dosimetry; IntechOpen: London, UK, 2022; Available online: https://www.intechopen.com/chapters/80975 (accessed on 15 November 2022).
- Moscovitch, M.; Horowitz, Y.S. Thermoluminescent materials for medical applications: LiF: Mg, Ti and LiF: Mg, Cu, P. Radiat. Meas. 2006, 41, S71–S77. [Google Scholar] [CrossRef]
- Pech-Canul, M.I. Development feasibility of TLD phosphors and thermoluminescent composite materials for potential applications in dosimetry: A review. Chem. Eng. J. 2022, 443, 136522. [Google Scholar]
- ThermoFisher Scientific. TLD-100 Thermoluminescent Dosimetry Material; ThermoFisher Scientific: Waltham, MA, USA, 2022. [Google Scholar]
- Pradhan, A. Thermoluminescence dosimetry and its applications. Radiation Protection. Radiat. Prot. 1981, 1, 153–167. [Google Scholar]
- Yusoff, A.L.; Hugtenburg, R.P.; Bradley, D.A. Review of development of a silica-based thermoluminescence dosimeter. Radiat. Phys. Chem. 2005, 74, 459–481. [Google Scholar] [CrossRef]
- McKinlay, A.F. Thermoluminescence Dosimetry. Med. Phys. 1981, 9, 142. [Google Scholar]
- Chen, R.; McKeever, S.W.S. Theory of Thermoluminescence and Related Phenomena; World Scientific Publ. Co. Pte. Ltd.: Singapore, 1997; ISBN 9789812830890. [Google Scholar]
- El-Adawy, A.; Khaled, N.; El-Sersy, A.; Hussein, A.; Donya, H. TL Dosimetric Properties of Li2O–B2O3 Glasses for Gamma Dosimetry. Appl. Radiat. Isot. 2010, 68, 1132–1136. [Google Scholar] [CrossRef]
- Kato, T.; Hirano, S.; Samizo, H.; Okada, G.; Kawaguchi, N.; Shinozaki, K.; Masai, H.; Yanagida, T. Dosimetric, luminescence and scintillation properties of Ce-doped CaF2-Al2O3-B2O3 glasses. Non-Cryst. Solids 2019, 509, 60–64. [Google Scholar] [CrossRef]
- Prabhu, N.S.; Sharmila, K.; Kumaraswamy, S.; Somashekarappa, H.M.; Sayyed, M.I.; Al-Ghamdi, H.; Almuqrin, A.H.; Kamath, S.D. An examination of the radiation-induced defects and thermoluminescence characteristics of Sm2O3 doped BaO-ZnO-LiF-B2O3 glass system for γ-dosimetry application. Opt. Mater. 2021, 118, 111252. [Google Scholar] [CrossRef]
- Amarlou, A.; Mohammadi, K.; Banaee, N.; Nedaei, H.A. Synthesis and evaluation of thermoluminescence properties of ZrO2:Mg for radiotherapy dosimetry. Radiat. Environ. Biophys. 2021, 60, 647–652. [Google Scholar] [CrossRef]
- Saray, A.A.; Kaviani, P.; Shahbazi-Gahrouei, D. Dosimetric characteristics of lithium triborate (LiB3O5) nanophosphor for medical applications. Radiat. Meas. 2021, 140, 106502. [Google Scholar] [CrossRef]
- Shivaramu, N.J. Thermoluminescence behavior of gamma irradiated Y2O3:Sm3+ nanophosphor. J. Lumin. 2021, 232, 117855. [Google Scholar] [CrossRef]
- Ali, S.; Ali, S.; Ahmad, H.; Rooh, G.; Zaman, F.; Iqbal, Y.; Kaewkhao, J.; El-Denglawey, A. Dosimetric study of Ce-doped bismuth-lithium-gadolinium borate glasses under gamma rays irradiations. SSRN Electron. J. 2022, 3. [Google Scholar] [CrossRef]
- Al-Buriahi, M.; Taha, T.A.; Alothman, M.A.; Donya, H.; Olarinoye, I.O. Influence of WO3 incorporation on synthesis, optical, elastic and radiation shielding properties of borosilicate glass system. Eur. Phys. J. Plus 2021, 136, 779. [Google Scholar] [CrossRef]
- Donya, H.; Alsulami, S. Photon Shielding Characterization of a Modified Titania-Bismuth-Borotellurite Glass System for Medical Applications. J. Korean Phys. Soc. 2019, 75, 871. [Google Scholar] [CrossRef]
- Donya, H.; Taha, T.T. Preparation, structure and optical properties of ZnTe and PbTe nanocrystals grown in fluorophosphate glass. J. Mater. Sci. Mater. Electron. 2018, 29, 8610–8616. [Google Scholar] [CrossRef]
- Janbabanezhad Toori, A.; Shabestani-Monfared, A.; Deevband, M.R.; Abdi, R.; Nabahati, M. Dose Assessment in Computed Tomography Examination and Establishment of Local Diagnostic Reference Levels in Mazandaran, Iran. J. Biomed. Phys. Eng. 2015, 5, 177–184. [Google Scholar]
- Selvan, C.S.; Sureka, C.S. Quality Assurance and Average Glandular dose Measurement in Mammography Units. J. Med. Phys. 2017, 42, 181. [Google Scholar]
- European Virtual Institute for Specification. Instrument Database: JEOL—JSM-6380. 2010. Available online: https://speciation.net/Database/Instruments/JEOL/JSM6380-;i18 (accessed on 11 October 2022).
- IAEA/WHO Secretariat of the Network Laboratories. The King Faisal Specialist Hospital & Research Centre’s SSDL. In SSDL Newsletter; SSDL: Wheelers Hill, VIC, Australia, 2021; Volume 73, pp. 24–25. [Google Scholar]
- PTW Calibration Lab. Calibrations at PTW—A Shore Guide; PTW Freiburg GmbH: Freiburg, Germany, 2021. [Google Scholar]
- Sun Nuclear: A Mirion Medical Company. Mammographic Accreditation Phantom Model 015. 20 September 2022. Available online: https://www.cirsinc.com/products/mammography/mammographic-accreditation-phantom/ (accessed on 10 October 2022).
- KFSH&RC. Secondary Standard Laboratory (SSDL); Biomedical Physics Department: Riyadh, Saudi Arabia, 2022. [Google Scholar]
- Sun Nuclear: A Mirion Medical Company. CTDI Phantoms. 2022. Available online: https://www.sunnuclear.com/products/ctdi-phantoms (accessed on 15 September 2022).
- ThermoFisher Scientific. Model 5500 Automatic TLD Reader with Winrems Operator’s Manual; ThermoFisher Scientific: Waltham, MA, USA, 2005. [Google Scholar]
- Kucuk, N.; Kucuk, I.; Cakir, M.; Keles, S.K. Synthesis, thermoluminescence and dosimetric properties of La-doped Zinc Borates. J. Lumin. 2013, 139, 84–90. [Google Scholar] [CrossRef]
- IEC. Thermoluninesence Dosimetry Systems for Personal and Environmental Monitoring, 2nd ed.; International Electronical Commission: Geneva, Switzerland, 2016. [Google Scholar]
- Abdel-Rahman, M.A.E.; Shady, H.A.; El-Mongy, H. New Aspects of Uranium Ore Concentration by using Acidic Media Solutions. Z. Anorg. Allg. Chem. 2018, 647, 477–482. [Google Scholar] [CrossRef]
- Abo-Bakr, O.O.; Abdel-Rahman, M.A.E.; El-Mongy, S.A. Validation and Correction for 208Tl Activity to Assay 232Th in Equilibrium with Its Daughters. Phys. Part. Nucl. Lett. 2019, 16, 835–841. [Google Scholar] [CrossRef]
- Farouk, S.; El-Azab, H.; Gad, A.; El-Nashar, H.; El-Faramawy, N. Investigation of thermoluminescence glow curves in quartz extracted from the Central Eastern Desert, Egypt. Luminescence 2020, 35, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Olko, P.; Bilski, P.; Kim, J.L. Microdosimetric Interpretation of the Photon Energy Response of LiF: Mg, Ti Detectors. Radiat. Prot. Dosim. 2002, 100, 119–122. [Google Scholar] [CrossRef] [PubMed]
- ThermoFisher Scientific. Thermo Scientific Harshaw TLD Materials and Dosimeters; ThermoFisher Scientific: Waltham, MA, USA, 2016. [Google Scholar]
- El-Sersy, A.; Hussein, A.; El-samman, H.; Khaled, N.; El-Adawy, A.; Donya, H. Mass attenuation coefficients of B2O3–Al2O3–SiO2–CaF2 glass system at 0.662 and 1.25 MeV gamma energies. J. Radioanal. Nucl. Chem. 2011, 288, 65–69. [Google Scholar] [CrossRef]
- Sasho Nikolovski, S.; Nikolovska, L.; Velevska, M.; Velev, V. Thermoluminescent Signal Fading of Encapsulated Lif: Mg, Ti Detectors in PTFE-Teflon Registered Trademark; Association for Medical Physics and Biomedical Engineering: Skopje, North Macedonia, 2010. [Google Scholar]
- Lee, Y.; Won, Y.; Kang, K. A method to minimise the fading effects of LiF: Mg, Ti (TLD-600 and TLD-700) using a pre-heat technique. Radiat. Prot. Dosim. 2015, 164, 449–455. [Google Scholar] [CrossRef] [PubMed]
TLD Samples | Composition | Preparation |
---|---|---|
TLV17 | 10 CaF2: 10 SiO2: 10 Al2O3: 70 B2O3: (Cu and Pr: 1500 ppm) | 15 h heat-treated after melt-quenching |
TLV30 | 10 CaF2: 10 SiO2: 10 Al2O3: 70 B2O3: (Cu and Pr: 1500 ppm) | 2 h heat-treated after melt-quenching |
TLD-100 | LiF: Ti, Mg | Crystals from Thermofisher Inc. (Waltham, MA, USA) |
TLD Samples | TLV17 | TLV30 | TLD-100 | |||
---|---|---|---|---|---|---|
Air Kerma (mGy) | Reading (nC) | Calibration Coefficient (mGy/nC) | Reading (nC) | Calibration Coefficient (mGy/nC) | Reading (nC) | Calibration Coefficient (mGy/nC) |
5 | 65 | 0.08 | 3 | 1.83 | 29 | 0.19 |
10 | 99.44 | 0.1 | 4.7 | 2.13 | 61 | 0.16 |
20 | 201 | 0.1 | 8.5 | 2.3 | 135 | 0.15 |
30 | 293 | 0.11 | 11 | 2.7 | 180 | 0.16 |
40 | 371 | 0.1 | 16 | 2.6 | 253 | 0.16 |
50 | 488 | 0.1 | 18 | 2.61 | 320 | 0.16 |
60 | 594 | 0.1 | 20 | 2.78 | 403 | 0.15 |
70 | 683 | 0.1 | 25 | 2.96 | 455 | 0.15 |
Average | 0.1 | 2.52 | 0.16 | |||
STDEV | 0.0074 | 0.4 | 0.0014 | |||
Relative STDEV | 7.4% | 15.7% | 8.6% |
kV = 40 keV = 26.1 | kV = 80 keV = 36.3 | kV = 100 keV = 41.8 | kV = 120 keV = 47.3 | kV = 150 keV = 61 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Air Kerma (mGy) | Reading (nC) | Cal. Coefficient (mGy/nC) | Reading (nC) | Cal. Coefficient (mGy/nC) | Reading (nC) | Cal. Coefficient (mGy/nC) | Reading (nC) | Cal. Coefficient (mGy/nC) | Reading (nC) | Cal. Coefficient (mGy/nC) |
TLV17 | 5 | 169 | 0.03 | 205 | 0.02 | 149 | 0.03 | 127 | 0.04 | 132.5 | 0.04 |
10 | 257 | 0.04 | 323 | 0.03 | 326 | 0.03 | 191.6 | 0.05 | 265 | 0.04 | |
20 | 514 | 0.04 | 640 | 0.03 | 578 | 0.03 | 441 | 0.05 | 532 | 0.04 | |
30 | 771 | 0.04 | 969 | 0.03 | 967 | 0.03 | 668 | 0.04 | 797 | 0.04 | |
40 | 1245 | 0.03 | 1167 | 0.03 | 1268 | 0.03 | 924 | 0.04 | 1060 | 0.04 | |
50 | 1285 | 0.04 | 1550 | 0.03 | 1435 | 0.03 | 1220 | 0.04 | 1329 | 0.04 | |
60 | 1542 | 0.04 | 1650 | 0.04 | 1786 | 0.03 | 1386 | 0.04 | 1592 | 0.04 | |
70 | 1669 | 0.04 | 1959 | 0.04 | 2098 | 0.03 | 1736 | 0.04 | 1857 | 0.04 | |
Average | 0.04 | 0.03 | 0.03 | 0.04 | 0.04 | ||||||
STDEV | 0.0040 | 0.004 | 0.002 | 0.0041 | 0 | ||||||
Relative STDEV | 10.7% | 11.8% | 5.3% | 9.3% | 0.2% | ||||||
TLV30 | 5 | 16.3 | 0.307 | 16 | 0.31 | 15 | 0.33 | 11 | 0.45 | 15.625 | 0.32 |
10 | 28 | 0.357 | 26 | 0.38 | 29 | 0.34 | 24 | 0.42 | 31.25 | 0.32 | |
20 | 53 | 0.377 | 50 | 0.40 | 52 | 0.38 | 46.6 | 0.43 | 61.55 | 0.32 | |
30 | 78 | 0.385 | 72.4 | 0.41 | 90.4 | 0.33 | 97 | 0.31 | 92.8 | 0.32 | |
40 | 103 | 0.388 | 104 | 0.38 | 128 | 0.31 | 115 | 0.35 | 125 | 0.32 | |
50 | 128 | 0.391 | 132 | 0.38 | 144 | 0.35 | 125 | 0.40 | 154.35 | 0.32 | |
60 | 153 | 0.392 | 153 | 0.39 | 180 | 0.33 | 134 | 0.45 | 186.55 | 0.32 | |
70 | 180 | 0.389 | 175 | 0.40 | 213 | 0.33 | 176 | 0.40 | 218 | 0.32 | |
Average | 0.37 | 0.38 | 0.34 | 0.40 | 0.32 | ||||||
STDEV | 0.03 | 0.032 | 0.022 | 0.05 | 0.002 | ||||||
Relative STDEV | 8.2% | 8.5% | 6.5% | 13.4% | 0.6% | ||||||
TLD-100 | 5 | 53 | 0.09 | 50.2 | 0.10 | 41 | 0.12 | 35 | 0.14 | 34 | 0.15 |
10 | 106 | 0.09 | 89.6 | 0.11 | 86 | 0.12 | 56 | 0.18 | 68 | 0.15 | |
20 | 191 | 0.10 | 185 | 0.11 | 175 | 0.11 | 124 | 0.16 | 159 | 0.13 | |
30 | 271 | 0.11 | 266 | 0.11 | 259 | 0.12 | 216 | 0.14 | 227 | 0.13 | |
40 | 372 | 0.11 | 349 | 0.11 | 333 | 0.12 | 248 | 0.16 | 272 | 0.15 | |
50 | 418 | 0.12 | 440 | 0.11 | 405 | 0.12 | 295 | 0.17 | 386 | 0.13 | |
60 | 497 | 0.12 | 506 | 0.12 | 493 | 0.12 | 372 | 0.16 | 431 | 0.14 | |
70 | 557 | 0.13 | 565 | 0.12 | 565 | 0.12 | 412 | 0.17 | 499 | 0.14 | |
Average | 0.11 | 0.11 | 0.12 | 0.16 | 0.14 | ||||||
STDEV | 0.011 | 0.006 | 0.004 | 0.014 | 0.01 | ||||||
Relative STDEV | 9.7% | 5.4% | 3% | 8.8% | 6.6% |
TL Samples | TLV17 | TLV30 | TLD-100 | |
---|---|---|---|---|
mAs | Dose (mGy) | Reading (nC) | Reading (nC) | Reading (nC) |
45 | 2.72 | 63.2 | 5.4 | 22 |
90 | 5.32 | 103 | 11 | 46 |
135 | 8 | 166 | 15 | 65 |
180 | 10.8 | 215 | 17.4 | 92 |
kVp = 28 Average Cal. Cof. | 0.048 mGy/nC | 0.53 mGy/nC | 0.12 mGy/nC |
Samples | RaySafe Detector | TLV17 | TLV30 | TLD-100 | |||
---|---|---|---|---|---|---|---|
mA | Dose CTDIcent. (mGy) | Reading (nC) | Dose CTDIcent. (mGy) | Reading (nC) | Dose CTDIcent. (mGy) | Reading (nC) | Dose CTDIcent. (mGy) |
185 | 3.6 | 54 | 3.2 | 8 | 4.4 | 16 | 3.36 |
250 | 5.2 | 95 | 5.7 | 14 | 7.56 | 28 | 5.9 |
370 | 7.7 | 114 | 6.84 | 18 | 9.7 | 37 | 7.8 |
550 | 11.4 | 184 | 11.04 | 22 | 11.88 | 48 | 10.1 |
740 | 15.6 | 259 | 15.54 | 29 | 13.34 | 68 | 14.3 |
kV = 120 Average Cal. Cof. | 0.06 mGy/nC | 0.46 mGy/nC | 0.21 mGy/nC |
TL Samples | Reading 1 (nC) | Reading 2 (nC) | Reading 3 (nC) | Reading 4 (nC) | Average Reading (nC) | STDEV | Relative STDEV (%) | Standard Error (%) |
---|---|---|---|---|---|---|---|---|
TLV17 | 413 | 426 | 405 | 436 | 414.7 | 10.59 | 2.56 | 1.28 |
TLV30 | 18.5 | 19.8 | 18.17 | 18.4 | 18.8 | 0.73 | 3.9 | 1.95 |
TLD-100 | 255 | 255 | 250 | 253 | 253 | 2.88 | 1.14 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algain, I.; Arib, M.; Al-Said, S.A.F.; Donya, H. Dosimetric Study of Heat-Treated Calcium–Aluminum–Silicon Borate Dosimeter for Diagnostic Radiology Applications. Sensors 2023, 23, 1011. https://doi.org/10.3390/s23021011
Algain I, Arib M, Al-Said SAF, Donya H. Dosimetric Study of Heat-Treated Calcium–Aluminum–Silicon Borate Dosimeter for Diagnostic Radiology Applications. Sensors. 2023; 23(2):1011. https://doi.org/10.3390/s23021011
Chicago/Turabian StyleAlgain, Ibrahim, Mehenna Arib, Said A. Farha Al-Said, and Hossam Donya. 2023. "Dosimetric Study of Heat-Treated Calcium–Aluminum–Silicon Borate Dosimeter for Diagnostic Radiology Applications" Sensors 23, no. 2: 1011. https://doi.org/10.3390/s23021011
APA StyleAlgain, I., Arib, M., Al-Said, S. A. F., & Donya, H. (2023). Dosimetric Study of Heat-Treated Calcium–Aluminum–Silicon Borate Dosimeter for Diagnostic Radiology Applications. Sensors, 23(2), 1011. https://doi.org/10.3390/s23021011