Differences in Tridimensional Shoulder Kinematics between Asymptomatic Subjects and Subjects Suffering from Rotator Cuff Tears by Means of Inertial Sensors: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Participants
2.2. Outcome Measures
2.3. Procedure
- Shoulder abduction (ABD) in the coronal plane, with the elbow extended, wrist in the neutral position, and the palm toward the midline at the beginning and end of the movement (four repetitions);
- Shoulder flexion (FLEX) in the sagittal plane, with the elbow extended, wrist in the neutral position, and the palm toward the midline at the beginning and end of the movement (four repetitions).
2.4. Data Analysis
3. Results
4. Discussion
4.1. Body Segment´s Angular Mobility
4.2. Scapulothoracic and Glenohumeral Joints’ Angular Mobility
4.3. Acceleration
4.4. Clinical Implications and Future Perspectives
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Surface Placement | Humerus | Scapula | Sternum |
---|---|---|---|
Anatomical Segment Represented Axis | Humerus | Scapula | Thorax |
X | IN-EX | AN-PO | Axial rotation |
Y | AB-AD | PR-RE | Flexion and extension |
Z | FL-EX | ME-LA | Lateral rotation |
Appendix B
Mean | SD | |||
---|---|---|---|---|
Asymptomatics (n = 14) | Patients (n = 13) | Asymptomatics (n = 14) | Patients (n = 13) | |
Age (years) | 55.78 | 52.68 | 9.45 | 9.78 |
Weight (kg) | 73.46 | 75.24 | 13.47 | 17.98 |
Height (m) | 1.65 | 1.64 | 0.09 | 0.09 |
BMI (kg/m2) | 26.73 | 28.22 | 3.81 | 6.59 |
ULFI (0–100) | 0 | 70.96 | 0 | 20.93 |
DASH (0–100) | 0 | 63.14 | 0 | 19.31 |
References
- Prescher, A. Anatomical Basics, Variations, and Degenerative Changes of the Shoulder Joint and Shoulder Girdle. Eur. J. Radiol. 2000, 35, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Ares, J.P.; de Murieta Rodeyro, J.S.; de la Fuente, A.B.V. Fisioterapia del Complejo Articular del Hombro: Evaluación y Tratamiento de los Tejidos Blandos; Elsevier: Madrid, Spain, 2004; ISBN 978-84-458-1370-6. [Google Scholar]
- Veeger, H.E.J.; van der Helm, F.C.T.; Chadwick, E.K.J.; Magermans, D. Toward Standardized Procedures for Recording and Describing 3-D Shoulder Movements. Behav. Res. Methods Instrum. Comput. 2003, 35, 440–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuesta-Vargas, A.; Galán-Mercant, A.; Williams, J. The Use of Inertial Sensors System for Human Motion Analysis. Phys. Ther. Rev. 2010, 15, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, A.; Takagishi, K.; Osawa, T.; Yanagawa, T.; Nakajima, D.; Shitara, H.; Kobayashi, T. Prevalence and Risk Factors of a Rotator Cuff Tear in the General Population. J. Shoulder Elbow. Surg. 2010, 19, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Teunis, T.; Lubberts, B.; Reilly, B.T.; Ring, D. A Systematic Review and Pooled Analysis of the Prevalence of Rotator Cuff Disease with Increasing Age. J. Shoulder Elbow. Surg. 2014, 23, 1913–1921. [Google Scholar] [CrossRef] [PubMed]
- Muir, S.W.; Corea, C.L.; Beaupre, L. Evaluating change in clinical status: Reliability and measures of agreement for the assessment of glenohumeral range of motion. N. Am. J. Sports Phys. Ther. 2010, 5, 98–110. [Google Scholar] [PubMed]
- Kontaxis, A.; Cutti, A.G.; Johnson, G.R.; Veeger, H.E.J. A Framework for the Definition of Standardized Protocols for Measuring Upper-Extremity Kinematics. Clin. Biomech. 2009, 24, 246–253. [Google Scholar] [CrossRef]
- Cutti, A.G.; Giovanardi, A.; Rocchi, L.; Davalli, A.; Sacchetti, R. Ambulatory Measurement of Shoulder and Elbow Kinematics through Inertial and Magnetic Sensors. Med. Biol. Eng. Comput. 2008, 46, 169–178. [Google Scholar] [CrossRef]
- Hervás, M.T.; Navarro Collado, M.J.; Peiró, S.; Rodrigo Pérez, J.L.; López Matéu, P.; Martínez Tello, I. Spanish version of the DASH questionnaire. Cross-cultural adaptation, reliability, validity and responsiveness. Med. Clin. 2006, 127, 441–447. [Google Scholar]
- Cuesta-Vargas, A.I.; Gabel, P.C. Cross-Cultural Adaptation, Reliability and Validity of the Spanish Version of the Upper Limb Functional Index. Health Qual. Life Outcomes 2013, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Anne, S.-C.; Marjorie, H. Woollacott Normal Postural Control. In Motor Control: Translating Research into Clinical Practice; Lipincott Williams & Wilkins: Philadelphia, PA, USA, 2007; pp. 163–164. [Google Scholar]
- De Baets, L.; van der Straaten, R.; Matheve, T.; Timmermans, A. Shoulder Assessment According to the International Classification of Functioning by Means of Inertial Sensor Technologies: A Systematic Review. Gait Posture 2017, 57, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, R.; Bashardoust Tajali, S.; Mir, S.M.; Ashrafi, H. The Role of Scapular Kinematics in Patients with Different Shoulder Musculoskeletal Disorders: A Systematic Review Approach. J. Bodyw. Mov. Ther. 2017, 21, 386–400. [Google Scholar] [CrossRef] [PubMed]
- Neer, C.S. Impingement Lesions. Clin. Orthop. Relat. Res. 1983, 70–77. [Google Scholar] [CrossRef]
- MacDonald, P.B.; Clark, P.; Sutherland, K. An Analysis of the Diagnostic Accuracy of the Hawkins and Neer Subacromial Impingement Signs. J. Shoulder Elbow. Surg. 2000, 9, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Hudak, P.L.; Amadio, P.C.; Bombardier, C. Development of an Upper Extremity Outcome Measure: The DASH (Disabilities of the Arm, Shoulder and Hand) [Corrected]. The Upper Extremity Collaborative Group (UECG). Am. J. Ind. Med. 1996, 29, 602–608. [Google Scholar] [CrossRef]
- Solway, S.; Beaton, D.E.; McConnell, S.; Bombardier, C. The DASH Outcome Measure User’s Manual: Disabilities of the Arm, Shoulder and Hand, 2nd ed.Institute for Work & Health: Oronto, ON, Canada, 2002; ISBN 978-0-9699726-4-8. [Google Scholar]
- Gabel, C.P.; Michener, L.A.; Burkett, B.; Neller, A. The Upper Limb Functional Index: Development and Determination of Reliability, Validity, and Responsiveness. J. Hand. Ther. 2006, 19, 328–348; quiz 349. [Google Scholar] [CrossRef]
- Wu, G.; van der Helm, F.C.T.; (DirkJan) Veeger, H.E.J.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X.; et al. ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef]
- Boettcher, C.E.; Ginn, K.A.; Cathers, I. The “empty Can” and “Full Can” Tests Do Not Selectively Activate Supraspinatus. J. Sci. Med. Sport 2009, 12, 435–439. [Google Scholar] [CrossRef]
- Hegedus, E.J.; Goode, A.; Campbell, S.; Morin, A.; Tamaddoni, M.; Moorman, C.T.; Cook, C. Physical Examination Tests of the Shoulder: A Systematic Review with Meta-Analysis of Individual Tests. Br. J. Sports Med. 2008, 42, 80–92; discussion 92. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J. Rotator Cuff Related Shoulder Pain: Assessment, Management and Uncertainties. Man. Ther. 2016, 23, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Duckworth, D.G.; Smith, K.L.; Campbell, B.; Matsen, F.A. Self-Assessment Questionnaires Document Substantial Variability in the Clinical Expression of Rotator Cuff Tears. J. Shoulder Elbow. Surg. 1999, 8, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Giai Via, A.; De Cupis, M.; Spoliti, M.; Oliva, F. Clinical and Biological Aspects of Rotator Cuff Tears. Muscles Ligaments Tendons J. 2013, 3, 70–79. [Google Scholar] [CrossRef]
- Matthewson, G.; Beach, C.J.; Nelson, A.A.; Woodmass, J.M.; Ono, Y.; Boorman, R.S.; Lo, I.K.Y.; Thornton, G.M. Partial Thickness Rotator Cuff Tears: Current Concepts. Adv. Orthop. 2015, 2015, 458786. [Google Scholar] [CrossRef] [Green Version]
- Ludewig, P.M.; Kamonseki, D.H.; Staker, J.L.; Lawrence, R.L.; Camargo, P.R.; Braman, J.P. Changing Our Diagnosic Paradigm: Movement System Diagnosis Classification. Int. J. Sports Phys. Ther. 2017, 12, 884–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolles, B.M.; Duc, C.; Coley, B.; Aminian, K.; Pichonnaz, C.; Bassin, J.-P.; Farron, A. Objective Evaluation of Shoulder Function Using Body-Fixed Sensors: A New Way to Detect Early Treatment Failures? J. Shoulder Elbow. Surg. 2011, 20, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Duc, C.; Farron, A.; Pichonnaz, C.; Jolles, B.M.; Bassin, J.-P.; Aminian, K. Distribution of Arm Velocity and Frequency of Arm Usage during Daily Activity: Objective Outcome Evaluation after Shoulder Surgery. Gait Posture 2013, 38, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Körver, R.J.P.; Heyligers, I.C.; Samijo, S.K.; Grimm, B. Inertia Based Functional Scoring of the Shoulder in Clinical Practice. Physiol. Meas. 2014, 35, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, R.L.; Braman, J.P.; Laprade, R.F.; Ludewig, P.M. Comparison of 3-Dimensional Shoulder Complex Kinematics in Individuals with and without Shoulder Pain, Part 1: Sternoclavicular, Acromioclavicular, and Scapulothoracic Joints. J. Orthop. Sports Phys. Ther. 2014, 44, 636–645, A1-8. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, R.L.; Braman, J.P.; Staker, J.L.; Laprade, R.F.; Ludewig, P.M. Comparison of 3-Dimensional Shoulder Complex Kinematics in Individuals with and without Shoulder Pain, Part 2: Glenohumeral Joint. J. Orthop. Sports Phys. Ther. 2014, 44, 646–655, B1-3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roren, A.; Lefevre-Colau, M.-M.; Poiraudeau, S.; Fayad, F.; Pasqui, V.; Roby-Brami, A. A New Description of Scapulothoracic Motion during Arm Movements in Healthy Subjects. Man. Ther. 2014. [Google Scholar] [CrossRef] [Green Version]
- Roren, A.; Lefevre-Colau, M.-M.; Roby-Brami, A.; Revel, M.; Fermanian, J.; Gautheron, V.; Poiraudeau, S.; Fayad, F. Modified 3D Scapular Kinematic Patterns for Activities of Daily Living in Painful Shoulders with Restricted Mobility: A Comparison with Contralateral Unaffected Shoulders. J. Biomech. 2012, 45, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Pichonnaz, C.; Lécureux, E.; Bassin, J.-P.; Duc, C.; Farron, A.; Aminian, K.; Jolles, B.M.; Gleeson, N. Enhancing Clinically-Relevant Shoulder Function Assessment Using Only Essential Movements. Physiol. Meas. 2015, 36, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Roldán-Jiménez, C.; Cuadros-Romero, M.; Bennett, P.; McPhail, S.; Kerr, G.K.; Cuesta-Vargas, A.I.; Martin-Martin, J. Assessment of Abduction Motion in Patients with Rotator Cuff Tears: An Analysis Based on Inertial Sensors. BMC Musculoskelet Disord. 2019, 20, 597. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Miao, C.; Zhang, H. Multi-Feature Nonlinear Optimization Motion Estimation Based on RGB-D and Inertial Fusion. Sensors 2020, 20, 4666. [Google Scholar] [CrossRef] [PubMed]
- Gosala, N.B.; Wang, F.; Cui, Z.; Liang, H.; Glauser, O.; Wu, S.; Sorkine-Hornung, O. Self-Calibrated Multi-Sensor Wearable for Hand Tracking and Modeling. IEEE Trans. Vis. Comput. Graph. 2021, PP. [Google Scholar] [CrossRef] [PubMed]
- Bijalwan, V.; Semwal, V.B.; Singh, G.; Mandal, T.K. HDL-PSR: Modelling Spatio-Temporal Features Using Hybrid Deep Learning Approach for Post-Stroke Rehabilitation. Neural Process. Lett. 2022. [Google Scholar] [CrossRef]
Mobility | Glenohumeral (Mean, 95% CI) | Scapulothoracic (Mean, 95% CI) | ||||
---|---|---|---|---|---|---|
Group | Asymptomatics | Patients | ANOVA (F, p) | Asymptomatics | Patients | ANOVA (F, p) |
ABD | 133.35 (124.60–142.11) | 72.97 (44.65–101.30) | 15.614; 0.001 | −8.76 (−17.10–−0.42) | 1.12 (−5.95–−8.19) | 4.415; 0.56 |
FLEX | 137.69 (128.91–146.47) | 82.10 (54.58–109.62) | 19.718; <0.001 | 8.01 (12.91–22.60) | 6 (0.80−11.21) | 13.212; 0.001 |
Axis | Humerus | Scapula | Sternum | ||||||
---|---|---|---|---|---|---|---|---|---|
Asymptomatics | Patients | ANOVA (F, P) | Asymptomatics | Patients | ANOVA (F, P) | Asymptomatics | Patients | ANOVA (F, P) | |
ABD X | 65.48 (34.12–96.85) | 38.01 (16.17–59.85) | 2.452; 0.13 | 65.48 (34.12–96.85) | 38.01 (16.17–59.85) | 4.686; 0.04 | 14.65 (11.33–17.91) | 5.71 (1.69–9.73) | 14.280; 0.001 |
ABD Y | 128.60 (108.18–149.02) | 77.557 (48.18–106.92) | 9.668; 0.005 | 33.83 (27.52–40.14) | 12.63 (5.56–19.70) | 22.764; <0.001 | 4.48 (2.45–6.51) | 1.99 (0.37–3.61) | 4.457; 0.05 |
ABD Z | 54.52 (31.14–77.89) | 35.72 (21.12–50.31) | 2.209; 0.15 | 5.73 (2.52–8.95) | 4.57 (1.87–7.28) | 0.377; 0.54 | 14.58 (10.05–19.64) | 3.74 (−2.77–10.26) | 9.116; 0.006 |
FLEX X | 86.45 (45.45–127.45) | 60.88 (17.42–104.34) | 0.883; 0.36 | 23.25 (18.75–27.75) | 8.30 (1–15.60) | 15.883; 0.001 | 12.29 (8.57–16) | 3.74 (0.65–6.8) | 15.883; 0.001 |
FLEX Y | 142.74 (134.66–150.82) | 88.48 (60.75–116.21) | 20.112; <0.001 | 29.09 (25.05–33.13) | 11.53 (5.15–17.91) | 28.126, <0.001 | 5.31 (3.42–7.20) | 2.29 (0.01–4.56) | 5.100; 0.03 |
FLEX Z | 58.92 (37.31–80.54) | 40.93 (25.61–56.24) | 2.066, 0.16 | 5.4 (3.51–7.40) | 6.38 (2.98–9.78) | 0.293; 0.59 | 12.78 (8.07–17.49) | 3.86 (−0.66–8.40) | 8.527; 0.008 |
Axis | Humerus | Scapula | Sternum | ||||||
---|---|---|---|---|---|---|---|---|---|
Asymptomatics | Patients | ANOVA (F, P) | Asymptomatics | Patients | ANOVA (F, P) | Asymptomatics | Patients | ANOVA (F, P) | |
ABD Nrv | 226.63 (190.26–263) | 109.42 (70.80–147.98) | 23.051; <0.001 | 56.85 (45.18–68.52) | 43.71 (27.97–59.45) | 17.875; <0.001 | 32.15 (28.63–35.66) | 22.56 (15.96–29.17) | 8.528; 0.007 |
FLEX Nrv | 242.10 (205.67–278.52) | 110.23 (70.54–149.93) | 29.030; <0.001 | 92.19 (83.22–101.16) | 40.99 (24.25–57.73) | 38.813; <0.001 | 39.03 (32.90–45.17) | 22.39 (14.73–30.34) | 14.196; 0.001 |
Axis | Humerus | Scapula | Sternum | ||||||
---|---|---|---|---|---|---|---|---|---|
Asymptomatics | Patients | ANOVA (F, P) | Asymptomatics | Patients | ANOVA (F, P) | Asymptomatics | Patients | ANOVA (F, P) | |
ABD Nrv | 22.30 (21.14–23.45) | 16.25 (9.86–222.64) | 4.119; 0.05 | 8.27 (7.51–9.03) | 4.48 (2.72–6.24) | 16.468; 0.001 | 3.56 (2.05–5.07) | 1.64 (1.15–2.13) | 6.001; 0.02 |
FLEX Nrv | 22.14 (21.48–22.8) | 18.53 (8.92–28.14) | 0.828; 0.37 | 8.14 (7.51–8.78) | 5.01 (2.25–7.77) | 7.065; 0.014 | 3.26 (2.19–4.32) | 2.38 (0.99–3.76) | 1.268; 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roldán-Jiménez, C.; Cuadros-Romero, M.; Bennett, P.; Cuesta-Vargas, A.I. Differences in Tridimensional Shoulder Kinematics between Asymptomatic Subjects and Subjects Suffering from Rotator Cuff Tears by Means of Inertial Sensors: A Cross-Sectional Study. Sensors 2023, 23, 1012. https://doi.org/10.3390/s23021012
Roldán-Jiménez C, Cuadros-Romero M, Bennett P, Cuesta-Vargas AI. Differences in Tridimensional Shoulder Kinematics between Asymptomatic Subjects and Subjects Suffering from Rotator Cuff Tears by Means of Inertial Sensors: A Cross-Sectional Study. Sensors. 2023; 23(2):1012. https://doi.org/10.3390/s23021012
Chicago/Turabian StyleRoldán-Jiménez, Cristina, Miguel Cuadros-Romero, Paul Bennett, and Antonio I. Cuesta-Vargas. 2023. "Differences in Tridimensional Shoulder Kinematics between Asymptomatic Subjects and Subjects Suffering from Rotator Cuff Tears by Means of Inertial Sensors: A Cross-Sectional Study" Sensors 23, no. 2: 1012. https://doi.org/10.3390/s23021012
APA StyleRoldán-Jiménez, C., Cuadros-Romero, M., Bennett, P., & Cuesta-Vargas, A. I. (2023). Differences in Tridimensional Shoulder Kinematics between Asymptomatic Subjects and Subjects Suffering from Rotator Cuff Tears by Means of Inertial Sensors: A Cross-Sectional Study. Sensors, 23(2), 1012. https://doi.org/10.3390/s23021012