Efficient and Automatic Breast Cancer Early Diagnosis System Based on the Hierarchical Extreme Learning Machine
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Overview
3.2. Processing of Images
3.3. ELM Theory
3.4. H-ELM Theory
- Step 1: Given a training set,
- Step 2: Calculate the hidden layer output of the last layer by Equation (4);
- Step 3: Calculate the output weight of the last layer ;
- Step 4: Connect each layer with a certain sequence through ;
- Step 5: Make the final decision on the original ELM, with the help of the auto-encoder.
4. Experiment Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv. Nutr. 2016, 7, 418–419. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Majeed, W.; Aslam, B.; Javed, I.; Khaliq, T.; Muhammad, F.; Ali, A.; Raza, A. Breast cancer: Major risk factors and recent developments in treatment. Asian Pac. J. Cancer Prev. 2014, 15, 3353–3358. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.S.; Zhao, Z.; Yang, Z.N.; Xu, F.; Lu, H.J.; Zhu, Z.Y.; Shi, W.; Jiang, J.; Yao, P.P.; Zhu, H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci. 2017, 13, 1387. [Google Scholar] [CrossRef]
- DeSantis, C.E.; Fedewa, S.A.; Goding Sauer, A.; Kramer, J.L.; Smith, R.A.; Jemal, A. Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA Cancer J. Clin. 2016, 66, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Mei, F.; Zhang, D.; Yang, Y. Improved non-local self-similarity measures for effective speckle noise reduction in ultrasound images. Comput. Methods Programs Biomed. 2020, 196, 105670. [Google Scholar] [PubMed]
- Doi, K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput. Med. Imaging Graph. 2007, 31, 198–211. [Google Scholar] [PubMed]
- Chen, H.; Wang, T.; Chen, T.; Deng, W. Hyperspectral Image Classification Based on Fusing S3-PCA, 2D-SSA and Random Patch Network. Remote. Sens. 2023, 15, 3402. [Google Scholar] [CrossRef]
- Xie, P.; Yang, C.; Yang, G.; Jiang, Y.; He, M.; Jiang, X.; Chen, Y.; Deng, L.; Wang, M.; Armstrong, D.G.; et al. Mortality prediction in patients with hyperglycaemic crisis using explainable machine learning: A prospective, multicentre study based on tertiary hospitals. Diabetol. Metab. Syndr. 2023, 15, 1–11. [Google Scholar]
- Ye, A.; Zhou, X.; Weng, K.; Gong, Y.; Miao, F.; Zhao, H. Image classification of hyperspectral remote sensing using semi-supervised learning algorithm. Math. Biosci. Eng. MBE 2023, 20, 11502–11527. [Google Scholar]
- Madhloom, H.T.; Kareem, S.A.; Ariffin, H. An image processing application for the localization and segmentation of lymphoblast cell using peripheral blood images. J. Med. Syst. 2012, 36, 2149–2158. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, J.; Thangavelu, P.; Ananda Kumar, T.D.; Palaniappan, S. Artificial Intelligence in Biomedical Image Processing; Springer: Berlin/Heidelberg, Germany, 2022; pp. 147–188. [Google Scholar]
- Cao, Z.; Pan, X.; Yu, H.; Hua, S.; Wang, D.; Chen, D.Z.; Zhou, M.; Wu, J. A Deep Learning Approach for Detecting Colorectal Cancer via Raman Spectra. BME Front. 2022, 2022, 9872028. [Google Scholar] [CrossRef]
- Fekri-Ershad, S.; Alsaffar, M.F. Developing a Tuned Three-Layer Perceptron Fed with Trained Deep Convolutional Neural Networks for Cervical Cancer Diagnosis. Diagnostics 2023, 13, 686. [Google Scholar] [CrossRef]
- Dubatovka, A.; Buhmann, J.M. Automatic Detection of Atrial Fibrillation from Single-Lead ECG Using Deep Learning of the Cardiac Cycle. BME Front. 2022, 2022, 9813062. [Google Scholar] [CrossRef]
- Kim, S.; Roe, D.; Choi, Y.; Woo, H.; Park, J.; Lee, J.I.; Choi, Y.; Jo, S.B.; Kang, M.S.; Song, Y.J.; et al. Artificial stimulus-response system capable of conscious response. Sci. Adv. 2021, 7, eabe3996. [Google Scholar] [CrossRef] [PubMed]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 2007; Volume 1. [Google Scholar]
- Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis; Wiley: New York, NY, USA, 1973; Volume 3. [Google Scholar]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4. [Google Scholar]
- Breiman, L. Classification and Regression Trees; Routledge: Oxford, UK, 2017. [Google Scholar]
- George, Y.M.; Zayed, H.H.; Roushdy, M.I.; Elbagoury, B.M. Remote computer-aided breast cancer detection and diagnosis system based on cytological images. IEEE Syst. J. 2013, 8, 949–964. [Google Scholar] [CrossRef]
- Kaymak, S.; Helwan, A.; Uzun, D. Breast cancer image classification using artificial neural networks. In Procedia Computer Science, Proceedings of the 9th International Conference on Theory and Application of Soft Computing, Computing with Words and Perception, ICSCCW 2017, Budapest, Hungary, 22–23 August 2017; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Żejmo, M.; Kowal, M.; Korbicz, J.; Monczak, R. Classification of breast cancer cytological specimen using convolutional neural network. J. Phys. Conf. Ser. 2017, 783, 012060. [Google Scholar] [CrossRef]
- Khan, S.; Islam, N.; Jan, Z.; Ud Din, I.; Rodrigues, J.J.P.C. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit. Lett. 2019, 125, 1–6. [Google Scholar] [CrossRef]
- Liu, K.; Kang, G.; Zhang, N.; Hou, B. Breast Cancer Classification Based on Fully-Connected Layer First Convolutional Neural Networks. IEEE Access 2018, 6, 23722–23732. [Google Scholar] [CrossRef]
- Subashini, T.; Ramalingam, V.; Palanivel, S. Breast mass classification based on cytological patterns using RBFNN and SVM. Expert Syst. Appl. 2009, 36, 5284–5290. [Google Scholar] [CrossRef]
- Timmers, J.; van Doorne-Nagtegaal, H.; Zonderland, H.; Van Tinteren, H.; Visser, O.; Verbeek, A.; Den Heeten, G.; Broeders, M. The Breast Imaging Reporting and Data System (BI-RADS) in the Dutch breast cancer screening programme: Its role as an assessment and stratification tool. Eur. Radiol. 2012, 22, 1717–1723. [Google Scholar] [CrossRef]
- Li, H.; Zhuang, S.; Li, D.A.; Zhao, J.; Ma, Y. Benign and malignant classification of mammogram images based on deep learning. Biomed. Signal Process. Control. 2019, 51, 347–354. [Google Scholar] [CrossRef]
- Salama, W.M.; Aly, M.H. Deep learning in mammography images segmentation and classification: Automated CNN approach. Alex. Eng. J. 2021, 60, 4701–4709. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Al-Khateeb, B.; Rashid, A.N.; Ibrahim, D.A.; Abd Ghani, M.K.; Mostafa, S.A. Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images. Comput. Electr. Eng. 2018, 70, 871–882. [Google Scholar] [CrossRef]
- Feng, H.; Yang, B.; Wang, J.; Liu, M.; Yin, L.; Zheng, W.; Yin, Z.; Liu, C. Identifying Malignant Breast Ultrasound Images Using ViT-Patch. Appl. Sci. 2023, 13, 3489. [Google Scholar] [CrossRef]
- Wang, Y.; Choi, E.J.; Choi, Y.; Zhang, H.; Jin, G.Y.; Ko, S.B. Breast Cancer Classification in Automated Breast Ultrasound Using Multiview Convolutional Neural Network with Transfer Learning. Ultrasound Med. Biol. 2020, 46, 1119–1132. [Google Scholar] [CrossRef]
- Jabeen, K.; Khan, M.A.; Alhaisoni, M.; Tariq, U.; Zhang, Y.D.; Hamza, A.; Mickus, A.; Damaševičius, R. Breast Cancer Classification from Ultrasound Images Using Probability-Based Optimal Deep Learning Feature Fusion. Sensors 2022, 22, 807. [Google Scholar] [CrossRef]
- Al-Dhabyani, W.; Gomaa, M.; Khaled, H.; Fahmy, A. Dataset of breast ultrasound images. Data Brief 2020, 28, 104863. [Google Scholar] [CrossRef] [PubMed]
- Geisel, J.; Raghu, M.; Hooley, R. The Role of Ultrasound in Breast Cancer Screening: The Case for and Against Ultrasound. Semin. Ultrasound Mri 2018, 39, 25–34. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Minhas, R.; Wu, Q.J.; Sid-Ahmed, M.A. Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recognit. 2011, 44, 2588–2597. [Google Scholar] [CrossRef]
- Daliri, M.R. A hybrid automatic system for the diagnosis of lung cancer based on genetic algorithm and fuzzy extreme learning machines. J. Med. Syst. 2012, 36, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, H.; Lang, Y.; Kim, J.; Lee, M.; Shin, H. Classification of BMI Control Commands Using Extreme Learning Machine from Spike Trains of Simultaneously Recorded 34 CA1 Single Neural Signals. Exp. Neurobiol. 2008, 17, 33. [Google Scholar] [CrossRef]
- Lyu, S.; Chowdhury, M.H.; Cheung, R.C. Efficient Hardware and Software Co-design for EEG Signal Classification based on Extreme Learning Machine. In Proceedings of the 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), Chittagong, Bangladesh, 23–25 February 2023; pp. 1–5. [Google Scholar]
- Atia, N.; Benzaoui, A.; Jacques, S.; Hamiane, M.; Kourd, K.E.; Bouakaz, A.; Ouahabi, A. Particle Swarm Optimization and Two-Way Fixed-Effects Analysis of Variance for Efficient Brain Tumor Segmentation. Cancers 2022, 14, 4399. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Tang, J.; Deng, C.; Huang, G.B. Extreme Learning Machine for Multilayer Perceptron. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 809–821. [Google Scholar] [CrossRef]
- Kasun, L.L.C.; Yang, Y.; Huang, G.B.; Zhang, Z. Dimension reduction with extreme learning machine. IEEE Trans. Image Process. 2016, 25, 3906–3918. [Google Scholar] [CrossRef]
- Sirjani, N.; Ghelich Oghli, M.; Kazem Tarzamni, M.; Gity, M.; Shabanzadeh, A.; Ghaderi, P.; Shiri, I.; Akhavan, A.; Faraji, M.; Taghipour, M. A novel deep learning model for breast lesion classification using ultrasound Images: A multicenter data evaluation. Phys. Medica 2023, 107, 102560. [Google Scholar] [CrossRef]
- Badawy, S.M.; Mohamed, A.E.N.A.; Hefnawy, A.A.; Zidan, H.E.; GadAllah, M.T.; El-Banby, G.M. Classification of Breast Ultrasound Images Based on Convolutional Neural Networks–A Comparative Study. In Proceedings of the 2021 International Telecommunications Conference (ITC-Egypt), Alexandria, Egypt, 13–15 July 2021; pp. 1–8. [Google Scholar]
Authors | Method | Accuracy/AUC |
---|---|---|
W.M. Salama et al. [30] | Combined deep learning methods | 99.43% |
H. Li et al. [29] | DenseNet II | 94.55% |
H. Feng et al. [32] | ViT-Patch | 0.898 |
Y. Wang et al. [33] | Multiview convolutional neural network | 0.9468 |
M.A. Mohammed et al. [31] | Combination of multi-fractal dimension and ANN classifier | 82.04% |
K. Jabeen et al. [34] | Probability-based optimal deep learning feature fusion method | 99.1% |
Size of Image | Number of Layer | Number of Hidden Nodes in Each Layer | Test Accuracy | Training Time |
---|---|---|---|---|
3 | 700 | 79.56% | 2.12 s | |
3 | 700 | 76.35% | 253.57 s |
Layers | Number of Hidden Nodes | Accuracy | Training Time |
---|---|---|---|
3 | 800 | 82.02% | 2.67 s |
3 | 3000 | 82.48% | 36.27 s |
3 | 5000 | 82.48% | 140.51 s |
4 | 700 | 84.48% | 2.85 s |
4 | 800 | 85.40% | 3.62 s |
4 | 1000 | 86.13% | 5.31 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, S.; Cheung, R.C.C. Efficient and Automatic Breast Cancer Early Diagnosis System Based on the Hierarchical Extreme Learning Machine. Sensors 2023, 23, 7772. https://doi.org/10.3390/s23187772
Lyu S, Cheung RCC. Efficient and Automatic Breast Cancer Early Diagnosis System Based on the Hierarchical Extreme Learning Machine. Sensors. 2023; 23(18):7772. https://doi.org/10.3390/s23187772
Chicago/Turabian StyleLyu, Songyang, and Ray C. C. Cheung. 2023. "Efficient and Automatic Breast Cancer Early Diagnosis System Based on the Hierarchical Extreme Learning Machine" Sensors 23, no. 18: 7772. https://doi.org/10.3390/s23187772
APA StyleLyu, S., & Cheung, R. C. C. (2023). Efficient and Automatic Breast Cancer Early Diagnosis System Based on the Hierarchical Extreme Learning Machine. Sensors, 23(18), 7772. https://doi.org/10.3390/s23187772