Polarization Properties of Coherently Superposed Rayleigh Backscattered Light in Single-Mode Fibers
Abstract
:1. Introduction
2. Reference System, Round-Trip Jones Matrix and Muller Matrix
3. Jones Matrix and Mueller Matrix Governing Coherently Superposed RBL
4. Depolarization
5. Experiments
5.1. Instantaneous SOP and DOP Measurement
5.2. Temporal Depolarization Measurement
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ko, J.; Kim, S.; Lee, J.; Won, S.; Kim, Y.; Jeong, J. Estimation of performance degradation of bidirectional WDM transmission systems due to Rayleigh backscattering and ASE noises using numerical and analytical models. J. Light. Technol. 2003, 21, 938–946. [Google Scholar] [CrossRef]
- Lloyd, S.W.; Digonnet, M.J.F.; Fan, S. Modeling Coherent Backscattering Errors in Fiber Optic Gyroscopes for Sources of Arbitrary Line Width. J. Light. Technol. 2013, 31, 2070–2078. [Google Scholar] [CrossRef]
- Juarez, J.C.; Maier, E.W.; Choi, K.N.; Taylor, H.F. Distributed fiber-optic intrusion sensor system. J. Light. Technol. 2005, 23, 2081–2087. [Google Scholar] [CrossRef]
- Rogers, A.J. Polarization-optical time domain reflectometry: A technique for the measurement of field distributions. Appl. Opt. 1981, 20, 1060–1074. [Google Scholar] [CrossRef]
- Gysel, P.; Staubli, R. Statistical properties of Rayleigh backscattering in single-mode fibers. J. Light. Technol. 1990, 8, 561–567. [Google Scholar] [CrossRef]
- Gysel, P.; Staubli, R.K. Spectral properties of Rayleigh backscattered light form single-mode fibers caused by a modulated probe signal. J. Light. Technol. 1990, 8, 1792–1798. [Google Scholar] [CrossRef]
- Van Deventer, M. Polarization properties of Rayleigh backscattering in single-mode fibers. J. Light. Technol. 1993, 11, 1895–1899. [Google Scholar] [CrossRef]
- Galtarossa, A.; Palmieri, L. Reflectometric Measurements of Polarization Properties in Optical-Fiber Links. IEEE Trans. Instrum. Meas. 2004, 53, 86–94. [Google Scholar] [CrossRef]
- Xu, T.; Ren, M.; Li, F. Polarization properties of Rayleigh backscattering with a high degree of coherence in single-mode fibers. Optik 2013, 124, 6790–6794. [Google Scholar] [CrossRef]
- Shang, Y.; Sun, M.; Wang, C.; Yang, J.; Du, Y.; Yi, J.; Zhao, W.; Wang, Y.; Zhao, Y.; Ni, J. Research Progress in Distributed Acoustic Sensing Techniques. Sensors 2022, 22, 6060. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, B.; Ye, Q.; Cai, H. Recent Progress in Distributed Fiber Acoustic Sensing with Φ-OTDR. Sensors 2020, 20, 6594. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, L.; Schenato, L.; Santagiustina, M.; Galtarossa, A. Rayleigh-Based Distributed Optical Fiber Sensing. Sensors 2022, 22, 6811. [Google Scholar] [CrossRef] [PubMed]
- Lellouch, A.; Biondi, B.L. Seismic Applications of Downhole DAS. Sensors 2021, 21, 2897. [Google Scholar] [CrossRef]
- Yu, J.; Xu, P.; Yu, Z.; Wen, K.; Yang, J.; Wang, Y.; Qin, Y. Principles and Applications of Seismic Monitoring Based on Submarine Optical Cable. Sensors 2023, 23, 5600. [Google Scholar] [CrossRef]
- Lv, A.; Li, J. On-line monitoring system of 35 kV 3-core submarine power cable based on φ-OTDR. Sensors Actuators A Phys. 2018, 273, 134–139. [Google Scholar] [CrossRef]
- Fang, J.; Li, Y.; Ji, P.N.; Wang, T. Drone Detection and Localization Using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology. J. Light. Technol. 2023, 41, 822–831. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, H.; Hu, J.; Zhu, K.; Dang, Y.; Yan, Y.; Tang, M.; Lu, C. Interference fading suppression in φ-OTDR using space-division multiplexed probes. Opt. Express 2021, 29, 15452–15462. [Google Scholar] [CrossRef]
- Lin, Z.; He, H.; Zhao, Z.; Tong, W.; Tang, M. Frequency response enhanced quantitative vibration detection using fading-free coherent φ-OTDR with randomized sampling. J. Light. Technol. 2023, 41, 5159–5168. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Shan, Y.; Sun, Z.; Zhu, F.; Zhang, X. Polarization dependence of phase-sensitive optical time-domain reflectometry and its suppression method based on orthogonal-state of polarization pulse pair. Opt. Eng. 2016, 55, 074109. [Google Scholar] [CrossRef]
- Guerrier, S.; Dorize, C.; Awwad, E.; Renaudier, J. A dual-polarization Rayleigh backscatter model for phase-sensitive OTDR applications. In Proceedings of the Optical Sensors and Sensing Congress, San Jose, CA, USA, 25–27 June 2019. [Google Scholar]
- Guerrier, S.; Dorize, C.; Awwad, E.; Renaudier, J. Introducing coherent MIMO sensing, a fading-resilient, polarization-independent approach to φ-OTDR. Opt. Express 2020, 28, 21081–21094. [Google Scholar] [CrossRef]
- Masoudi, A.; Newson, T.P. Analysis of distributed optical fiber acoustic sensors through numerical modelling. Opt. Express 2017, 25, 32021–32040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, J.; Xiong, F.; Zhang, X.; Chen, X.; Ding, Z.; Zheng, Y.; Wang, F.; Chen, M. A Space-Division Multiplexing Method for Fading Noise Suppression in the Φ-OTDR System. Sensors 2021, 21, 1694. [Google Scholar] [CrossRef] [PubMed]
- Moreno, P.J.V.; Rochat, E.; Fermoso, P.; Ruiz, M.R.F.; Martins, H.; Lopez, S.M.; Ocana, M.; Herraez, M.G. Cancellation of reference update-induced 1/f noise in a chirped-pulse DAS. Opt. Lett. 2022, 47, 3588–3591. [Google Scholar] [CrossRef]
- Jones, R.C. A new calculus for the treatment of optical systems VI. Experimental determination of the matrix. J. Opt. Soc. Am. 1947, 37, 110–112. [Google Scholar] [CrossRef]
- Pistoni, N.C. Simplified approach to the Jones calculus in retracing optical circuits. Appl. Opt. 1995, 34, 7870–7876. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, M.; Martelli, P. Polarization, mirrors, and reciprocity: Birefringence and its compensation in optical retracing circuits. Adv. Opt. Photon. 2017, 9, 129–168. [Google Scholar] [CrossRef]
- Jones, R.C. A new calculus for the treatment of optical systems II. Proof of three general equivalence theorems. J. Opt. Soc. Am. 1941, 31, 493–499. [Google Scholar] [CrossRef]
- Lu, S.-Y.; Chipman, R.A. Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 1996, 13, 1106–1113. [Google Scholar] [CrossRef]
- Gerrard, A.; Burch, J.M. Appendix F: Connection between Jones and Mueller Calculi. In Introduction to Matrix Methods in Optics; Dover Publications, Inc.: New York, NY, USA, 1975; pp. 328–337. [Google Scholar]
- Lu, S.-Y.; Chipman, R.A. Mueller matrices and the degree of polarization. Opt. Commun. 1998, 146, 11–14. [Google Scholar] [CrossRef]
Jones’ Reference System | Pistoni’s Reference System | |
---|---|---|
Forward | ||
Reflection | ||
Backward | ||
Round-Trip |
Jones’ Reference System | Pistoni’s Reference System | |
---|---|---|
Forward | ||
Reflection | ||
Backward | ||
Round-Trip |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Zhang, H.; Hu, D.J.J. Polarization Properties of Coherently Superposed Rayleigh Backscattered Light in Single-Mode Fibers. Sensors 2023, 23, 7769. https://doi.org/10.3390/s23187769
Dong H, Zhang H, Hu DJJ. Polarization Properties of Coherently Superposed Rayleigh Backscattered Light in Single-Mode Fibers. Sensors. 2023; 23(18):7769. https://doi.org/10.3390/s23187769
Chicago/Turabian StyleDong, Hui, Hailiang Zhang, and Dora Juan Juan Hu. 2023. "Polarization Properties of Coherently Superposed Rayleigh Backscattered Light in Single-Mode Fibers" Sensors 23, no. 18: 7769. https://doi.org/10.3390/s23187769
APA StyleDong, H., Zhang, H., & Hu, D. J. J. (2023). Polarization Properties of Coherently Superposed Rayleigh Backscattered Light in Single-Mode Fibers. Sensors, 23(18), 7769. https://doi.org/10.3390/s23187769