Optical Fiber Temperature and Humidity Dual Parameter Sensing Based on Fiber Bragg Gratings and Porous Film
Abstract
:1. Introduction
2. Theory of Sensor Detection
2.1. Temperature Sensing Theory
2.2. Humidity Sensing Theory
3. Sensor Fabrication and Demodulation
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernández-Medina, A.; Frövel, M.; Heredero, R.L.; Belenguer, T.; de la Torre, A.; Moravec, C.; Julián, R.S.; Gonzalo, A.; Cebollero, M.; Álvarez-Herrero, A. Embedded fiber Bragg grating sensors for monitoring temperature and thermo-elastic deformations in a carbon fiber optical bench. Sensors 2023, 23, 6499. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Xu, Z.; Cai, X.; Zhang, D.; Fu, H. Highly sensitive fiber Bragg grating sensing system based on a dual-loop optoelectronic oscillator with the enhanced Vernier effect. J. Light. Technol. 2022, 40, 4871–4877. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X.; Li, S.; Yan, X.; Zhang, X.; Wang, F.; Suzuki, T.; Ohishi, Y.; Cheng, T. A miniature optical fiber Fabry-Perot interferometer temperature sensor based on Tellurite glass. IEEE Trans. Instrum. Meas. 2021, 70, 7005706. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, H.; Jiang, C.; Guo, X.; Zhang, H.; Wang, P.; Sun, S. In-fiber Fabry-Perot temperature sensor using silicone-oil-filled the quartz capillary tube. Opt. Fiber Technol. 2022, 71, 102937. [Google Scholar] [CrossRef]
- Chang, P.; Liu, K.; Jiang, J.; Xu, T.; Zhang, Z.; Ma, J.; Zhao, Y.; Zhang, J.; Li, X.; Liu, T. The temperature responsive mechanism of fiber surface plasmon resonance sensor. Sensor Actuat. A Phys. 2020, 309, 112022. [Google Scholar] [CrossRef]
- Kong, L.; Du, X.; Ren, C.; Chen, W.; Yang, K.; Wang, X.; Chi, M.; Wang, Y.; Fang, H. Lab-in-fibers: Single optical fiber with three channels for simultaneous detection of pH value, refractive index and temperature. Sens. Actuators B Chem. 2023, 385, 133727. [Google Scholar] [CrossRef]
- Song, J.; Sun, S.; Jiang, C.; Chen, H.; Zhu, X.; Ren, J.; Wang, S. A tapered multicore fiber sensor for measuring temperature and magnetic field. Opt. Fiber Technol. 2023, 80, 103384. [Google Scholar] [CrossRef]
- Cheng, S.; Hu, W.; Ye, H.; Wu, L.; Li, Q.; Zhou, A.; Yang, M.; Zhao, Q.; Guo, D. Tapered multicore fiber interferometer for ultra-sensitive temperature sensing with thermo-optical materials. Opt. Express 2021, 29, 35765–35775. [Google Scholar] [CrossRef]
- Zhou, C.; Zhou, Q.; Wang, B.; Tian, J.; Yao, Y. High-sensitivity relative humidity fiber-optic sensor based on an internal-external Fabry-Perot cavity Vernier effect. Opt. Express 2021, 29, 11854–11868. [Google Scholar] [CrossRef]
- Presti, D.L.; Massaroni, C.; Piemonte, V.; Saccomandi, P.; D’Amato, R.; Caponero, M.A.; Schena, E. Agar-coated fiber Bragg grating sensor for relative humidity measurements: Influence of coating thickness and polymer concentration. IEEE Sens. J. 2019, 19, 3335–3342. [Google Scholar] [CrossRef]
- Liu, S.; Ji, Y.; Yang, J.; Sun, W.; Li, H. Nafion film temperature/humidity sensing based on optical fiber Fabry-Perot interference. Sens. Actuators A Phys. 2018, 269, 313–321. [Google Scholar] [CrossRef]
- Ma, Q.F.; Tou, Z.Q.; Ni, K.; Lim, Y.Y.; Lin, Y.F.; Wang, Y.R.; Zhou, M.H.; Shi, F.F.; Niu, L.; Dong, X.Y.; et al. Carbon-nanotube/Polyvinyl alcohol coated thin core fiber sensor for humidity measurement. Sens. Actuators B Chem. 2018, 257, 800–806. [Google Scholar] [CrossRef]
- Bai, W.; Yang, M.; Dai, J.; Yu, H.; Wang, G.; Qi, C. Novel polyimide coated fiber Bragg grating sensing network for relative humidity measurements. Opt. Express 2016, 24, 3230–3237. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Qu, Y.; Wang, W.; Sun, T.; Yang, M. Thin-film-based optical fiber Fabry-Perot interferometer used for humidity sensing. Appl. Optics 2018, 57, 2967–2972. [Google Scholar] [CrossRef] [PubMed]
- Ascorbe, J.; Corres, J.; Matias, I.; Arregui, F. High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances. Sens. Actuators B Chem. 2016, 233, 7–16. [Google Scholar] [CrossRef]
- Jagtap, S.; Rane, S.; Arbuj, S.; Rane, S.; Gosavi, S. Optical fiber based humidity sensor using Ag decorated ZnO nanorods. Microelectron. Eng. 2018, 187, 1–5. [Google Scholar] [CrossRef]
- Yang, M.; Xie, W.; Dai, Y.; Lee, D.; Dai, J.; Zhang, Y.; Zhuang, Z. Dielectric multilayer-based fiber optic sensor enabling simultaneous measurement of humidity and temperature. Opt. Express 2014, 22, 11892–11899. [Google Scholar] [CrossRef]
- Kumar, S.; Raina, K.K.; Islam, T. Anodic aluminium oxide based humidity sensor for online moisture monitoring of power transformer. Sens. Actuators B Chem. 2021, 329, 128908. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, Q.; Wang, S.; Huang, Q.; Yuan, Z.; Zhang, Y.; Jiang, Y.; Tai, H. Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sens. Actuators B Chem. 2020, 317, 128204. [Google Scholar] [CrossRef]
- Cheng, T.; Li, B.; Zhang, F.; Chen, J.; Zhang, Q.; Yan, X.; Zhang, X.; Suzuki, T.; Ohishi, Y.; Wang, F. A surface Plasmon resonance optical fiber sensor for simultaneous measurement of relative humidity and temperature. IEEE Sens. J. 2022, 22, 3246–3253. [Google Scholar] [CrossRef]
- Wang, J.-K.; Ying, Y.; Hu, N.; Cheng, S.-Y. Double D-shaped optical fiber temperature and humidity sensor based on ethanol and polyvinyl alcohol. Optik 2021, 242, 166972. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Yuan, L.; Zhou, L.; Qiao, X.; Hu, M. An optical fiber Fabry-Perot interferometer sensor for simultaneous measurement of relative humidity and temperature. IEEE Sens. J. 2015, 15, 2891–2897. [Google Scholar] [CrossRef]
- Hromadka, J.; Hazlan, N.N.M.; Hernandez, F.U.; Correia, R.; Norris, A.; Morgan, S.P.; Korposh, S. Simultaneous in situ temperature and relative humidity monitoring in mechanical ventilators using an array of functionalised optical fibre long period grating sensors. Sens. Actuators B Chem. 2019, 286, 306–314. [Google Scholar] [CrossRef]
- Yin, B.; Sang, G.; Yan, R.; Wu, Y.; Wu, S.; Wang, M.; Liu, W.; Li, H.; Wang, Q. Wavelength- and intensity-demodulated dual-wavelength fiber laser sensor for simultaneous RH and temperature detection. IEEE Access 2020, 8, 52091–52099. [Google Scholar] [CrossRef]
- Huang, Y.; Qiu, H.; Deng, C.; Lian, Z.; Yang, Y.; Yu, Y.; Hu, C.; Dong, Y.; Shang, Y.; Zhang, Q.; et al. Simultaneous measurement of humidity and temperature based on ZnO-coated hollow core Bragg fiber. IEEE Photonic Tech. L 2022, 34, 903–906. [Google Scholar] [CrossRef]
- Yao, J.; Pu, S.; Li, Y.; Zhang, R.; Jia, Z. Sensing properties of thinned phase-shifted fiber Bragg gratings. Sens. Mater. 2020, 32, 3335–3342. [Google Scholar] [CrossRef]
- Astrova, E.V.; Tolmachev, V.A. Effective refractive index and composition of oxidized porous silicon films. Mater. Sci. Eng. B 2000, 69, 142–148. [Google Scholar] [CrossRef]
- Ma, C.; Peng, D.; Bai, X.; Liu, S.; Luo, L. A review of optical fiber sensing technology based on thin film and Fabry-Perot cavity. Coatings 2023, 13, 1277. [Google Scholar] [CrossRef]
Prior Art | Material | Measurement Range (%RH) | Sensitivity |
---|---|---|---|
[9] | Chitosan | 40–92 | 7.15 nm/% RH |
[10] | Agarose | 10–95 | 0.0024 nm·%−1 |
[11] | Nafion | 30–85 | 3.78 nm/%RH |
[12] | Polyvinyl alcohol | >70 | −0.4573 dB/%RH |
[13] | Polyimide | 23.8–83.4 | 1.832 pm/%RH |
[14] | SiO2 | 0.06–70 | 0.3 nm/%RH |
[15] | SnO2 | 20–90 | 1.9 nm/%RH |
[16] | ZnO | 20–95 | 25.2 mV/%RH |
[17] | TiO2 | 1.8–74.7 | 0.43 nm/%RH |
[18] | Al2O3 | 3–98 (and 180–1000 ppm) | / |
Reported work | Al2O3 | 11.3–84.3 | 185 pm/%RH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Zhou, J.; Sun, C.; Liu, Q. Optical Fiber Temperature and Humidity Dual Parameter Sensing Based on Fiber Bragg Gratings and Porous Film. Sensors 2023, 23, 7587. https://doi.org/10.3390/s23177587
Peng J, Zhou J, Sun C, Liu Q. Optical Fiber Temperature and Humidity Dual Parameter Sensing Based on Fiber Bragg Gratings and Porous Film. Sensors. 2023; 23(17):7587. https://doi.org/10.3390/s23177587
Chicago/Turabian StylePeng, Jiankun, Jianren Zhou, Chengli Sun, and Qingping Liu. 2023. "Optical Fiber Temperature and Humidity Dual Parameter Sensing Based on Fiber Bragg Gratings and Porous Film" Sensors 23, no. 17: 7587. https://doi.org/10.3390/s23177587
APA StylePeng, J., Zhou, J., Sun, C., & Liu, Q. (2023). Optical Fiber Temperature and Humidity Dual Parameter Sensing Based on Fiber Bragg Gratings and Porous Film. Sensors, 23(17), 7587. https://doi.org/10.3390/s23177587