Game Fun Prediction Based on Frequency Domain Physiological Signals: Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. PPG-Based HRV Measurement
2.2. Experiments and Dataset
3. Game Fun Prediction and Results
4. Discussions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Nasr, M.S.; Drachen, A.; Canossa, A. Game Analytics: Maximizing the Value of Player Data; Springer: London, UK, 2013. [Google Scholar]
- Soares, R.T.; Sarmanho, E.; Miura, M.; Barros, T.; Jacobi, R.; Castanho, C. Biofeedback Sensors in Electronic Games: A Practical Evaluation. In Proceedings of the 2017 16th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), Curitiba, Brazil, 2–4 November 2017; pp. 56–65. [Google Scholar] [CrossRef]
- Alayna, H.; Sergi, J. Applications of Biological and Physiological Signals in Commercial Video Gaming and Game Research: A Review. Front. Comput. Sci. 2021, 3, 557608. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience; Harper & Row: New York, NY, USA, 1990. [Google Scholar]
- Csikszentmihalyi, M. Beyond Boredom and Anxiety; Jossey-Bass: San Francisco, CA, USA, 1975. [Google Scholar]
- Chen, J. Flow in Games. Comm. ACM 2007, 50, 31–34. [Google Scholar] [CrossRef]
- Smith, G.; Treanor, M.; Whitehead, J.; Mateas, M. Rhythm-based level generation for 2D platformers. In Proceedings of the 4th International Conference on Foundations of Digital Games (FDG’09), New York, NY, USA, 26–30 April 2009; pp. 175–182. [Google Scholar]
- Schell, J. Understanding entertainment: Story and gameplay are one. Comput. Entertain. 2005, 3, 6. [Google Scholar] [CrossRef]
- Soares, R.; Sarmanho, E.; Miura, M.; Barros, T.; Castanho, C. Biofeedback sensors in game telemetry research. In Proceedings of the XV Brazilian Symposium on Computer Games and Digital Entertainment (SBGames 2016), São Paulo, Brazil, 8–10 September 2016; pp. 81–89. [Google Scholar]
- Cowley, B.; Ravaja, N.; Heikura, T. Cardiovascular physiology predicts learning effects in a serious game activity. Comput. Educ. 2013, 60, 299–309. [Google Scholar] [CrossRef]
- Alian, A.A.; Shelley, K.H. Photoplethysmography. Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 395–406. [Google Scholar] [CrossRef]
- Kamen, P. Heart rate variability. Aust. Fam. Physician. 1996, 25, 1087–1089+1091. [Google Scholar]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 28, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Ji, L.; Liu, C. Heart rate variability monitoring for emotion and disorders of emotion. Physiol. Meas. 2019, 40, 064004. [Google Scholar] [CrossRef]
- Choi, K.-H.; Kim, J.; Kwon, O.S.; Kim, M.J.; Ryu, Y.H.; Park, J.-E. Is heart rate variability (HRV) an adequate tool for evaluating human emotions?—A focus on the use of the International Affective Picture System (IAPS). Psychiatry Res. 2017, 251, 192–196. [Google Scholar] [CrossRef]
- Hjortskov, N.; Rissen, D.; Blangsted, A.K.; Fallentin, N.; Lundberg, U.; Sogaard, K. The effect of mental stress on heart rate variability and blood pressure during computer work. Eur. J. Appl. Physiol. 2004, 92, 84–89. [Google Scholar] [CrossRef]
- Sun, Z.; Vedernikov, A.; Kykyri, V.-L.; Pohjola, M.; Nokia, M.; Li, X. Estimating Stress in Online Meetings by Remote Physiological Signal and Behavioral Features. In Proceedings of the UbiComp/ISWC’22 Adjunct: Adjunct Proceedings of the 2022 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2022 ACM International Symposium on Wearable Computers, Cambridge, UK, 11–15 September 2022; Association for Computing Machinery: New York, NY, USA; pp. 216–220. [Google Scholar] [CrossRef]
- Clark, L.A.; Watson, D. Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. J. Abnorm. Psychol. 1991, 100, 316–336. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, K.; Larentzakis, A.; Khamis, N.; Alsuhaibani, G.; Alaska, Y.; Giallafos, E. Can wearable devices accurately measure heart rate variability? A systematic review. Folia Med. 2018, 60, 7–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.; Zhao, H.; Ju, K.; Shin, K.; Lee, M.; Shelley, K.; Chon, K.H. Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information? J. Clin. Monit. Comput. 2008, 22, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.K.; Hu, Y.F.; Lin, S.F. Methodological considerations in calculating heart rate variability based on wearable device heart rate samples. Comput. Biol. Med. 2018, 102, 396–401. [Google Scholar] [CrossRef]
- Pinheiro, N.; Couceiro, R.; Henriques, J.; Muehlsteff, J.; Quintal, I.; Goncalves, L.; Carvalho, P. Can PPG be used for HRV analysis? In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; Volume 2016, pp. 2945–2949. [Google Scholar]
- Bevilacqua, F.; Engström, H.; Backlund, P. Accuracy Evaluation of Remote Photoplethysmography Estimations of Heart Rate in Gaming Sessions with Natural Behavior; Cheok, A., Inami, M., Romão, T., Eds.; Advances in Computer Entertainment Technology; ACE; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2017; Volume 10714. [Google Scholar] [CrossRef]
- Berger, R.D.; Akselrod, S.; Gordon, D.; Cohen, R.J. An efficient algorithm for spectral analysis of heart rate variability. IEEE Trans. Biomed. Eng. 1986, 33, 900–904. [Google Scholar] [CrossRef] [PubMed]
- Baselli, G.; Cerutti, S.; Civardi, S.; Lombardi, F.; Malliani, A.; Merri, M.; Pagani, M.; Rizzo, G. Heart rate variability signal processing: A quantitative approach as an aid to diagnosis in cardiovascular pathologies. Int. J. Bio Med. Comput. 1987, 20, 51–70. [Google Scholar] [CrossRef]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Cardiology, Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Clifford, G.; Tarassenko, L. Quantifying errors in spectral estimates of HRV due to beat replacement and resampling. IEEE Trans. Biomed. Eng. 2005, 52, 630–638. [Google Scholar] [CrossRef] [Green Version]
- Potter, M.; Kinsner, W. Instantaneous heart rate: Should RR-intervals be resampled? In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 277–282. [Google Scholar]
- Shin, K.; Minamitani, H.; Onishi, S.; Yamazaki, H.; Lee, M. The power spectral analysis of heart rate variability in athletes during dynamic exercise—Part I. Clin. Cardiol. 1995, 18, 583–586. [Google Scholar] [CrossRef]
- Singh, D.; Vinod, K.; Saxena, S. Sampling frequency of the RR interval time series for spectral analysis of heart rate variability. J. Med. Eng. Technol. 2004, 28, 263–272. [Google Scholar] [CrossRef]
- Hegde, V.; Deekshit, R.; Satyanarayana, P. Heart rate variability analysis for abnormality detection using time frequency distribution–smoothed pseudo Winger Ville method. Power 2013, 30, 10. [Google Scholar]
- Durosier, L.D.; Green, G.; Batkin, I.; Seely, A.J.; Ross, M.G.; Richardson, B.S.; Frasch, M.G. Sampling rate of heart rate variability impacts the ability to detect acidemia in ovine fetuses near-term. Front. Pediatr. 2014, 2, 38. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef] [Green Version]
- Batchu, V.; Battu, V. “How to rate a video game?”—A prediction system for video games based on multimodal information. arXiv 2019, arXiv:1805.11372. [Google Scholar] [CrossRef]
Group | Amount | Subjective (Game Fun Score) | Objective (LF/HF Ratio) | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
High-score | 23 | 81.00 | 5.54 | 2.10 | 0.70 |
Low-score | 13 | 65.00 | 4.80 | 2.11 | 0.82 |
Notation | Definition |
---|---|
LHSD | SD of LF/HF ratios |
LHP | Amount of peaks for LF/HF ratio curve |
LHA | Average amplitude of LF/HF ratio curve |
α, β, γ | Linear parameters |
ε | Prediction error compensation parameter |
Model | MAE | RMSE |
---|---|---|
Model 1 | 4.16 | 5.07 |
Model 2 (Low-score) | 8.03 | 9.57 |
Model 2 (High-score) | 6.71 | 8.22 |
Model 2 (All) | 7.22 | 8.76 |
Model 1 | Model 2 (All) | |||
---|---|---|---|---|
Indicators | MSE | RMSE | MSE | RMSE |
LHSD | 4.74 | 5.54 | 8.18 | 9.78 |
LHA | 5.03 | 5.66 | 7.96 | 9.62 |
LHP | 4.59 | 5.39 | 7.71 | 9.44 |
LHSD + LHA | 4.35 | 5.30 | 7.59 | 9.21 |
LHSD + LHP | 4.59 | 5.38 | 7.46 | 9.00 |
LHA + LHP | 4.43 | 5.29 | 7.69 | 9.43 |
LHSD + LHA + LHP | 4.16 | 5.07 | 7.22 | 8.76 |
Method | 10 Classes | 5 Classes |
---|---|---|
Trailer-based [34] | 70.5% | − |
HRV-based (Model 1) | 85.2% | 100% |
HRV-based (Model 2) | 70.6% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.-Y.; Shih, C.-H.; You, Y.-T. Game Fun Prediction Based on Frequency Domain Physiological Signals: Observational Study. Sensors 2023, 23, 7051. https://doi.org/10.3390/s23167051
Xu Y-Y, Shih C-H, You Y-T. Game Fun Prediction Based on Frequency Domain Physiological Signals: Observational Study. Sensors. 2023; 23(16):7051. https://doi.org/10.3390/s23167051
Chicago/Turabian StyleXu, Yeong-Yuh, Chi-Huang Shih, and Yan-Ting You. 2023. "Game Fun Prediction Based on Frequency Domain Physiological Signals: Observational Study" Sensors 23, no. 16: 7051. https://doi.org/10.3390/s23167051
APA StyleXu, Y.-Y., Shih, C.-H., & You, Y.-T. (2023). Game Fun Prediction Based on Frequency Domain Physiological Signals: Observational Study. Sensors, 23(16), 7051. https://doi.org/10.3390/s23167051