Comparison of Depth-Specific Prediction of Soil Properties: MIR vs. Vis-NIR Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Spectral Measurement and Chemical Analysis
2.4. Spectral Pre-Processing
2.5. Predictive Algorithms
2.5.1. Multivariate Adaptive Regression Splines
2.5.2. Data Splitting
2.6. Model Evaluation
3. Results
3.1. Distribution of Soil Properties under Different Management Practices
3.2. Prediction of Soil Properties at Different Depths with the Whole Depth (0–100 cm) Model
3.2.1. Prediction of Soil Properties at Different Depths Based on MIR
3.2.2. Prediction of Soil Properties at Different Depths Based on vis-NIR
3.3. Prediction of Soil Properties at Different Depths with the Shallow Layers (0–40 cm) Model
3.3.1. Prediction of Soil Properties at Different Depths Based on MIR
3.3.2. Prediction of Soil Properties at Different Depths Based on vis-NIR
4. Discussion
4.1. The Connection between Soil Properties and Depth, as well as Management Practices
4.2. Prediction Performance of Soil Properties with MIR vs. vis-NIR Spectra
4.3. Prediction Performance of Soil Properties with 0–100 cm vs. 0–40 cm Calibration
4.4. A Potential Optimal Approach for Predicting Soil Properties at Specific Depths
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Duan, X.; Xie, Y.; Ou, T.; Lu, H. Effects of soil erosion on long-term soil productivity in the black soil region of northeastern China. Catena 2011, 87, 268–275. [Google Scholar] [CrossRef]
- Yan, Y.; Ji, W.; Li, B.; Wang, G.; Hu, B.; Zhang, C.; Mouazen, A.M. Effects of Long-Term Straw Return and Environmental Factors on the Spatiotemporal Variability of Soil Organic Matter in the Black Soil Region: A Case Study. Agronomy 2022, 12, 2532. [Google Scholar] [CrossRef]
- Liu, X. Changes in Soil Quality under Different Agricultural Management in Chinese Mollisols. Ph.D. Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 2004. [Google Scholar]
- Rossel, R.V.; McBratney, A.B. Soil chemical analytical accuracy and costs: Implications from precision agriculture. Aust. J. Exp. Agric. 1998, 38, 765–775. [Google Scholar] [CrossRef]
- Rossel, R.V.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Wilding, L.P. Spatial variability: Its documentation, accomodation and implication to soil surveys. In Soil Spatial Variability: Proceedings of the Workshop of the ISSS and the SSSA, Las Vegas, NV, USA, 30 November–1 December 1984; Pudoc: Wageningen, The Netherlands, 1985; pp. 166–194. [Google Scholar]
- Ji, W.; Adamchuk, V.I.; Biswas, A.; Dhawale, N.M.; Sudarsan, B.; Zhang, Y.; Viscarra Rossel, R.A.; Shi, Z. Assessment of soil properties in situ using a prototype portable MIR spectrometer in two agricultural fields. Biosyst. Eng. 2016, 152, 14–27. [Google Scholar] [CrossRef]
- McBratney, A.B.; Minasny, B.; Rossel, R.V. Spectral soil analysis and inference systems: A powerful combination for solving the soil data crisis. Geoderma 2006, 136, 272–278. [Google Scholar] [CrossRef]
- Vasques, G.M.; Grunwald, S.; Sickman, J.O. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma 2008, 146, 14–25. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Janik, L.J.; Viscarra Rossel, R.A.; Macdonald, L.M.; McLaughlin, M.J. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl. Spectrosc. Rev. 2014, 49, 139–186. [Google Scholar] [CrossRef]
- Janik, L.J.; Merry, R.H.; Skjemstad, J.O. Can mid infrared diffuse reflectance analysis replace soil extractions? Aust. J. Exp. Agric. 1998, 38, 681–696. [Google Scholar] [CrossRef]
- Williams, P.; Norris, K. Near-Infrared Technology in the Agricultural and Food Industries; American Association of Cereal Chemists, Inc.: St. Paul, MN, USA, 1987. [Google Scholar]
- Stenberg, B.; Rossel, R.V. Diffuse reflectance spectroscopy for high-resolution soil sensing. In Proximal Soil Sensing; Springer: Berlin/Heidelberg, Germany, 2010; pp. 29–47. [Google Scholar]
- Shahrayini, E.; Shafizadeh-Moghadam, H.; Noroozi, A.A.; Eghbal, M.K. Multiple-depth modeling of soil organic carbon using visible–near infrared spectroscopy. Geocarto Int. 2022, 37, 1393–1407. [Google Scholar] [CrossRef]
- Xu, S.; Zhao, Y.; Wang, M.; Shi, X. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy. Geoderma 2018, 310, 29–43. [Google Scholar] [CrossRef]
- Rossel, R.V.; Lark, R.M.; Ortega, A.S. Using wavelets to analyse proximally sensed Vis–NIR soil spectra. In Proximal Soil Sensing; Springer: Berlin/Heidelberg, Germany, 2010; pp. 201–210. [Google Scholar]
- Ben-Dor, E.; Heller, D.; Chudnovsky, A. A novel method of classifying soil profiles in the field using optical means. Soil Sci. Soc. Am. J. 2008, 72, 1113–1123. [Google Scholar] [CrossRef]
- Kusumo, B.H.; Hedley, C.B.; Hedley, M.J.; Hueni, A.; Tuohy, M.P.; Arnold, G.C. The use of diffuse reflectance spectroscopy for in situ carbon and nitrogen analysis of pastoral soils. Soil Res. 2008, 46, 623–635. [Google Scholar] [CrossRef]
- Kusumo, B.H.; Hedley, M.J.; Tuohy, M.P.; Hedley, C.B.; Arnold, G.C. Predicting soil carbon and nitrogen concentrations and pasture root densities from proximally sensed soil spectral reflectance. In Proximal Soil Sensing; Springer: Berlin/Heidelberg, Germany, 2010; pp. 177–190. [Google Scholar]
- Li, S.; Shi, Z.; Chen, S.; Ji, W.; Zhou, L.; Yu, W.; Webster, R. In Situ Measurements of Organic Carbon in Soil Profiles Using vis-NIR Spectroscopy on the Qinghai–Tibet Plateau. Environ. Sci. Technol. 2015, 49, 4980–4987. [Google Scholar] [CrossRef]
- Zhang, Y.; Biswas, A.; Ji, W.; Adamchuk, V.I. Depth-Specific Prediction of Soil Properties In Situ using vis-NIR Spectroscopy. Soil Sci. Soc. Am. J. 2017, 81, 993–1004. [Google Scholar] [CrossRef]
- Wijewardane, N.K.; Hetrick, S.; Ackerson, J.; Morgan, C.L.S.; Ge, Y. VisNIR integrated multi-sensing penetrometer for in situ high-resolution vertical soil sensing. Soil Tillage Res. 2020, 199, 104604. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; FAO: Rome, Italy, 2015. [Google Scholar]
- Minasny, B.; McBratney, A.B.; Wadoux, A.M.J.-C.; Akoeb, E.N.; Sabrina, T. Precocious 19th century soil carbon science. Geoderma Reg. 2020, 22, e00306. [Google Scholar] [CrossRef]
- Geladi, P.; MacDougall, D.; Martens, H. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl. Spectrosc. 1985, 39, 491–500. [Google Scholar] [CrossRef]
- Rinnan, Å.; Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; McBratney, A. Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils–Critical review and research perspectives. Soil Biol. Biochem. 2011, 43, 1398–1410. [Google Scholar] [CrossRef]
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Franzluebbers, A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Deiss, L.; Sall, A.; Demyan, M.S.; Culman, S.W. Does crop rotation affect soil organic matter stratification in tillage systems? Soil Tillage Res. 2021, 209, 104932. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Xie, H.T.; Yang, X.M.; Drury, C.F.; Yang, J.Y.; Zhang, X.D. Predicting soil organic carbon and total nitrogen using mid- and near-infrared spectra for Brookston clay loam soil in Southwestern Ontario, Canada. Can. J. Soil. Sci. 2011, 91, 53–63. [Google Scholar] [CrossRef]
- Odgers, N.P.; McBratney, A.B.; Minasny, B. Bottom-up digital soil mapping. I. Soil layer classes. Geoderma 2011, 163, 38–44. [Google Scholar] [CrossRef]
- Chevallier, T.; Fujisaki, K.; Roupsard, O.; Guidat, F.; Kinoshita, R.; de Melo Viginio Filho, E.; Lehner, P.; Albrecht, A. Short-range-order minerals as powerful factors explaining deep soil organic carbon stock distribution: The case of a coffee agroforestry plantation on Andosols in Costa Rica. Soil 2019, 5, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Van de Broek, M.; Govers, G. Quantification of organic carbon concentrations and stocks of tidal marsh sediments via mid-infrared spectroscopy. Geoderma 2019, 337, 555–564. [Google Scholar] [CrossRef]
- Shree, J.S.J.A.B.; Dangal, R.S.; Rivard, S.L.S.P.C.; Savage, K. Soil organic carbon fractions in the Great Plains of the United States: An application of mid-infrared spectroscopy. Biogeochemistry 2021, 156, 97–114. [Google Scholar]
- Huang, X.; Senthilkumar, S.; Kravchenko, A.; Thelen, K.; Qi, J. Total carbon mapping in glacial till soils using near-infrared spectroscopy, Landsat imagery and topographical information. Geoderma 2007, 141, 34–42. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, Q.; Wang, X.; Wu, Y.; Yang, X.; Liu, F. Estimation of soil organic carbon and total nitrogen in different soil layers using VNIR spectroscopy: Effects of spiking on model applicability. Geoderma 2017, 293, 54–63. [Google Scholar] [CrossRef]
- Zhao, D.; Arshad, M.; Wang, J.; Triantafilis, J. Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: Effects of multiple calibration models and spiking. Comput. Electron. Agric. 2021, 182, 105990. [Google Scholar] [CrossRef]
- Guerrero, C.; Stenberg, B.; Wetterlind, J.; Viscarra Rossel, R.A.; Maestre, F.T.; Mouazen, A.M.; Zornoza, R.; Ruiz-Sinoga, J.D.; Kuang, B. Assessment of soil organic carbon at local scale with spiked NIR calibrations: Effects of selection and extra-weighting on the spiking subset. Eur. J. Soil Sci. 2014, 65, 248–263. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Wang, Q.; Peng, J.; Ji, W.; Liu, H.; Li, X.; Viscarra Rossel, R.A. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Sci. China Earth Sci. 2014, 57, 1671–1680. [Google Scholar] [CrossRef]
- Ji, W.; Li, S.; Chen, S.; Shi, Z.; Viscarra Rossel, R.A.; Mouazen, A.M. Prediction of soil attributes using the Chinese soil spectral library and standardized spectra recorded at field conditions. Soil Tillage Res. 2016, 155, 492–500. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth-Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Guan, K.; Zhang, C.; Lee, D.; Margenot, A.J.; Ge, Y.; Peng, J.; Zhou, W.; Zhou, Q.; Huang, Y. Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing. Remote Sens. Environ. 2022, 271, 112914. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, J.; Li, B.; Qin, C.; Ji, W.; Xu, Y.; Huang, Y. High-Resolution Mapping of Soil Organic Matter at the Field Scale Using UAV Hyperspectral Images with a Small Calibration Dataset. Remote Sens. 2023, 15, 1433. [Google Scholar] [CrossRef]
- Naes, T.; Isaksson, T.; Kowalski, B. Locally weighted regression and scatter correction for near-infrared reflectance data. Anal. Chem. 1990, 62, 664–673. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
Mode | Management Practice | ||
---|---|---|---|
Mode 1 | ridge tillage | 60 cm spacing | no straw returning |
Mode 2 | ridge tillage | 60 cm spacing | straw returning (cover) |
Mode 3 | shallow rotary tillage | 40:80 cm spacing | straw returning (after crushing) |
Mode 4 | deep rotary tillage | 40:80 cm spacing | straw returning (after crushing) |
Mode 5 | rotary plowing | 40:80 cm spacing | straw returning (after crushing) |
Mode 6 | no tillage | 40:80 cm spacing | straw returning (cover) |
Mode 7 | no tillage | 40:100 cm spacing | straw returning (cover) |
Mode 8 | no tillage | 40:140 cm spacing | straw returning (cover) |
Mode 9 | strip tillage | 40:90 cm spacing | straw returning (cover) |
Mode 10 | strip tillage | 70 cm spacing | straw returning (cover) |
Soil Properties | Whole Depth (0–100 cm) | Shallow Layers (0–40 cm) | ||||||
---|---|---|---|---|---|---|---|---|
Min. | Mean | Max. | SD | Min. | Mean | Max. | SD | |
OM (g/kg) | 3.28 | 13.78 | 31.50 | 6.21 | 5.20 | 17.68 | 31.50 | 4.40 |
TN (g/kg) | 0.22 | 0.82 | 1.86 | 0.36 | 0.35 | 1.03 | 1.86 | 0.28 |
Calibration Type | Organic Matter (OM) | Total Nitrogen (TN) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Calibration | Validation | Calibration | Validation | |||||||
R2 | RMSEc | R2 | RMSEp | RPD | R2 | RMSEc | R2 | RMSEp | RPD | |
0–100 cm MIR | 0.96 | 1.24 | 0.95 | 1.29 | 4.90 | 0.90 | 0.11 | 0.90 | 0.11 | 3.23 |
0–100 cm vis-NIR | 0.85 | 2.48 | 0.87 | 2.15 | 2.94 | 0.76 | 0.18 | 0.80 | 0.15 | 2.34 |
0–40 cm MIR | 0.88 | 1.47 | 0.87 | 1.52 | 2.78 | 0.80 | 0.13 | 0.73 | 0.12 | 2.07 |
0–40 cm vis-NIR | 0.65 | 2.65 | 0.68 | 2.40 | 1.86 | 0.62 | 0.17 | 0.64 | 0.17 | 1.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Yin, J.; Li, B.; Sun, F.; Miao, T.; Cao, Y.; Shi, Z.; Chen, S.; Hu, B.; Ji, W. Comparison of Depth-Specific Prediction of Soil Properties: MIR vs. Vis-NIR Spectroscopy. Sensors 2023, 23, 5967. https://doi.org/10.3390/s23135967
Shi Z, Yin J, Li B, Sun F, Miao T, Cao Y, Shi Z, Chen S, Hu B, Ji W. Comparison of Depth-Specific Prediction of Soil Properties: MIR vs. Vis-NIR Spectroscopy. Sensors. 2023; 23(13):5967. https://doi.org/10.3390/s23135967
Chicago/Turabian StyleShi, Zhan, Jianxin Yin, Baoguo Li, Fujun Sun, Tianyu Miao, Yan Cao, Zhou Shi, Songchao Chen, Bifeng Hu, and Wenjun Ji. 2023. "Comparison of Depth-Specific Prediction of Soil Properties: MIR vs. Vis-NIR Spectroscopy" Sensors 23, no. 13: 5967. https://doi.org/10.3390/s23135967