On the Application of Microfluidic-Based Technologies in Forensics: A Review
Abstract
:1. Introduction
2. Forensic Investigations
2.1. Forensic Serology
2.1.1. Blood
Presumptive Tests
Confirmatory Tests
2.1.2. Semen
Presumptive Tests
Confirmatory Tests
2.1.3. Saliva
Presumptive Tests
Confirmatory Tests
2.2. Forensic Analysis of Drugs and Explosives
2.2.1. Drug Analysis
Presumptive Tests
Confirmatory Tests
2.2.2. Explosives
Presumptive Tests
Confirmatory Tests
3. A Short Summary on Microfluidics
3.1. Portable Microfluidic-Based Devices (PMDs)
Material Type | Subcategory | Example | Fabrication Techniques 1 | Pros and Cons |
---|---|---|---|---|
Inorganic | Silicon | Silicon wafer | LIGA (X-ray lithography, micro-molding, electroplating)
Anodic/fusion bonding (post processing to close open channels) | Resistant to organic solvent Excellent physical properties Need for clean room Expensive Non-flexible Use of toxic chemicals Limited opacity |
Glass | Glass capillary | Photo lithography Wet/dry etching Anodic/fusion bonding (post processing to close open channels) | Optical transparency Chemical inertness Electrical insulation Biocompatible Cumbersome assembly of capillary-based micro reactors Brittle Need for clean room | |
Organic (polymers) | Elastomer | PDMS | Soft micromachining (e.g., laser ablation) [106,107] Computer numerical control (CNC) micromachining [108,109] Optical/X-ray/photo lithography | Low cost Optical transparency Biocompatible |
Thermoplastic | PC, PMMA, PU, PS | Soft lithography Hot embossing [110,111,112] Injection molding [113] | Disposable Design flexibility | |
Cyclic olefin polymers (COPs) | Cyclic olefin copolymers (COCs) | Micromilling CNC machining Hot embossing [114,115] Injection molding 3D printing | Low water absorptivity Electrical insulating Optical transparency High rigidity Inert to acids/alkalines/solvents | |
Paper | Pressed cellulosic fibers | Pure cotton-based | Inkjet printing Wax patterning Lithography [116] Plasma/laser treatment Paper origami and stacking (for 3D paper-based microfluidics) | Flexible Biocompatible Cost-effective Disposable Special requirements and chemical treatment to avoid fast degradation |
3.2. General Components of Microfluidic-Based Point-of-Need Devices (PON)
3.3. Microfluidic Paper-Based Analytical Device (PAD)
4. Microfluidics in Forensic Applications
4.1. Forensic Serology: Body Fluid Screening (BFS) and Identification (BFID)
4.2. Genetic Profiling and Human Identification (DNA Typing)
4.2.1. Microfluidic in DNA Sample Work-Up
4.2.2. Microfluidics in DNA Amplification and Detection
4.3. Illicit Drugs and Drugs of Abuse
4.3.1. Seized Drugs
4.3.2. Drugs in Biological Samples
4.4. Explosive Residues
5. The Road Ahead for Microfluidic-Based Forensic Diagnosis
5.1. Shortcomings
- Lack of standardization: Some developed microfluidic platforms, specifically paper-based ones, cannot withstand harsh environmental conditions, are sensitive to temperature and/or humidity, show limited stability of chemical reagents, and can have variations from batch to batch [117]. All these factors result in a lack of standardization which further impedes the acceptance of these platforms by the forensic authorities.
- Challenges in integration: An ideal microfluidic device for on-scene application should provide the so-called “sample-to-answer” and directly connect the forensic investigators to the results. The laboratory-based confirmatory tests (e.g., assays) normally involve multi-step procedures requiring sample collection and processing (e.g., pre-concentration), chemical/biological reactions and generation of signals, detection, analysis, and final reporting of the results. A successful microfluidic device which can provide a rapid and accurate alternative method on-site should have all these steps integrated and automated in a single platform. A vast majority of research on this field has mainly focused on developing proof-of-concept methodologies for individual steps as independent technologies. Undoubtedly, discretization is an imperative stage of developing any technology for resolving potential problems. To realize an end product, however, all these discrete technologies must be integrated. The transition from laboratory microfluidic prototypes to a commercial product is still challenging. Most of these platforms are mainly tested under controlled laboratory conditions, which makes them difficult to integrate with the other technologies under realistic conditions.
- Product cost: Material and manufacturing methods must be considered for mass production to enable a smooth transition of the technology to the forensic field. Most laboratory-based platforms are made of glass, silicon, or PDMS, which require cleanroom facilities and lithography techniques; while plastic and paper-based platforms are affordable alternatives for mass production, their universal applicability is questionable. The choice of material is highly constrained by the application, compatibility with the sample, and possible integration with detection elements.
- Associated trade-offs with sample-to-answer platforms: Up to this date, there are few commercial rapid DNA analysis platforms which can provide a sample-to-DNA profile. Compared to the conventional method, these platforms have some limitations and trade-offs including reduced sensitivity, higher costs than originally anticipated, speed, and throughput [4]. These trade-offs along with the cultural forensic landscape have further limited the use of such commercial sample-to-answer platforms, making the implementation of fluidic technology in the forensic field a complex task.
5.2. Future Perspectives
- Enhancing the existing capabilities: plastic and paper-based microfluidic platforms have grown tremendously over the last decade, mainly due to their low cost and ease-of use. These platforms offer multiplexing for simultaneous analysis of multiple compounds. At this stage, a focus change toward standardization and integration of these platforms with electronic devices (e.g., smartphones for detection and/or analysis steps) can further expand their applicability in different forensic fields.
- Empowering the current methodologies: as stated above, the integration of all analysis steps in a single platform is challenging, which in some cases makes the sensitivity/specificity of microfluidic technology questionable compared to the laboratory-based methods. In lieu of developing a competing technology with the current state-of-the-art, it is recommended to develop more innovative platforms which can empower the existing technologies and provide court-proof results. This can further help overburdened forensic laboratories to accelerate analysis and testing.
- Miniaturization of bulky peripherals: one of the other challenges which restricts the commercialization and final use of the microfluidic platforms for crime scene investigation is the need for bulky peripherals, e.g., pumps, optical detectors, power sources, etc. All the components must be miniaturized to achieve a fully portable platform. Research in this field has already been initiated to miniaturize peripheral set-ups and develop portable point-of-care (POC) devices [222]. It is suggested to consider a similar research direction to develop portable platforms for forensic applications.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALS | Alternate light source |
AN | Ammonium nitrate |
BF | Body fluid |
BFID | Body fluid identifictation |
BFS | Body fluid screening |
CBA | Cocaine-binding aptamer |
CE | Capillary electrophoresis |
CL | Chemiluminescence |
CLSM | Confocal laser scanning microscope |
CNC | Computer numerical control |
CNS | Central nervous system |
COC | Cyclic olefin copolymer |
DE | Differential extraction |
DNA | Deoxyribonucleic acid |
DNB | 1,3-dinitrobenzene |
DNT | Dinitrotoluene |
ECD | Electrochemical detection |
ECL | Electrochemiluminescence |
EDS | Energy dispersive spectroscopy |
EDX | Energy dispersive X-ray analyzer |
ELISA | Enzyme-linked immunosorbent assay |
FBI | Federal Bureau of Investigation |
FT-IR | Fourier transform infrared |
GC–MS | Gas chromatography–mass spectrometry |
GHB | Gamma hydroxybutyrate |
Hb | Hemoglobin |
HID | Human identification |
HPLC | High-performance liquid chromatography |
HSA | Heat-sensitive adhesive |
HTN3 | Histatin 3 |
IC | Ion chromatography |
IMS | Ion mobility spectrometry |
IR | Infrared |
KL | Kestle–Meyer |
LC–MS | Liquid chromatography–mass spectrometry |
LLE | Liquid–liquid extraction |
LMG | Leuchomalachite green |
LOC | Lab-on-chip |
LOD | Limit of detection |
LSD | Lysergic acid diethylamide |
MDMA | Methylenedioxymethamphetamine |
ME | Microchip electrophoresis |
MEKC | Micellar electrokinetic chromatography |
MS | Mass spectrometry |
NG | Nitroglycerin |
PC | Polycarbonate |
PCR | Polymerase chain reaction |
PDMS | Polydimethylsiloxane |
PeT | Polyethylene terephthalate |
PETN | Pentaerythritol tetranitrate |
PHP | Phenolphthalein |
PMD | Portable microfluidic-based device |
PMMA | Polymethylmethacrylate |
POC | Point-of-care |
PON | Point-of-need |
PRM1 | Protamine 1 |
PS | Polystyrene |
PSA | Prostate-specific antigen |
PU | Polyurethane |
RDX | Cyclotrimethylenetrinitramene |
RNA | Ribonucleic acid |
RSID | Rapid stain identification |
RT-PCR | Reverse transcription polymerase chain reaction |
SAP | Seminal acid phosphatase |
SDS | Sodium dodecyl sulfate |
SEM | Scanning electron microscopy |
SPE | Solid phase extraction |
STATH | Statherin |
STR | Short tandem repeat |
TAK | Takayama |
TATP | Triacetone triperoxide |
TEI | Teichman’s |
TLC | Thin layer chromatography |
TMB | Tetramethylbenzidine |
TNB | Trinitrobenzene |
TNT | Trinitrotoluene |
UN | Urea nitrate |
UV | Ultraviolet |
UV–Vis | Ultraviolet-visible |
XRD | X-ray diffractometry |
PAD | Microfluidic paper-based analytical device |
PON | Microfluidic-based point-of-need |
References
- Addington, L.A. Hot vs. Cold Cases: Examining Time to Clearance for Homicides Using NIBRS Data. Justice Res. Policy 2007, 9, 87–112. [Google Scholar] [CrossRef]
- Kloosterman, A.; Mapes, A.; Geradts, Z.; van Eijk, E.; Koper, C.; van den Berg, J.; Verheij, S.; van der Steen, M.; van Asten, A. The interface between forensic science and technology: How technology could cause a paradigm shift in the role of forensic institutes in the criminal justice system. Philos. Trans. R. Soc. Biol. Sci. 2015, 370, 1674. [Google Scholar] [CrossRef]
- Bruijns, B.; van Asten, A.; Tiggelaar, R.; Gardeniers, H. Microfluidic Devices for Forensic DNA Analysis: A Review. Biosensors 2016, 6, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turiello, R.; Nouwairi, R.L.; Landers, J.P. Taking the microfluidic approach to nucleic acid analysis in forensics: Review and perspectives. Forensic Sci. Int. Genet. 2023, 63, 102824. [Google Scholar] [CrossRef] [PubMed]
- Al-Hetlani, E. Forensic drug analysis and microfluidics. Electrophoresis 2013, 34, 1262–1272. [Google Scholar] [CrossRef]
- Musile, G.; Agard, Y.; Wang, L.; De Palo, E.F.; McCord, B.; Tagliaro, F. Paper-based microfluidic devices: On-site tools for crime scene investigation. TrAC Trends Anal. Chem. 2021, 143, 116406. [Google Scholar] [CrossRef]
- Vyas, B.; Halámková, L.; Lednev, I.K. A universal test for the forensic identification of all main body fluids including urine. Forensic Chem. 2020, 20, 100247. [Google Scholar] [CrossRef]
- Virkler, K.; Lednev, I.K. Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci. Int. 2009, 188, 1–17. [Google Scholar] [CrossRef]
- Basset, P.; Blandin, P.; Grini, A.; Delemont, S.; Samie, L.; Castella, V. A simplified protocol for the detection of blood, saliva, and semen from a single biological trace using immunochromatographic tests. Forensic Sci. Med. Pathol. 2022, 18, 141–148. [Google Scholar] [CrossRef]
- An, J.H.; Shin, K.J.; Yang, W.I.; Lee, H.Y. Body fluid identification in forensics. BMB Rep. 2012, 45, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Maskell, P.D.; Jackson, G. Presumptive drug testing—The importance of considering prior probabilities. WIREs Forensic Sci. 2020, 2, e1371. [Google Scholar] [CrossRef]
- Muro, C.K.; Doty, K.C.; Bueno, J.; Halámková, L.; Lednev, I.K. Vibrational Spectroscopy: Recent Developments to Revolutionize Forensic Science. Anal. Chem. 2015, 87, 306–327. [Google Scholar] [CrossRef] [PubMed]
- Virkler, K.; Lednev, I.K. Raman spectroscopic signature of blood and its potential application to forensic body fluid identification. Anal. Bioanal. Chem. 2010, 396, 525–534. [Google Scholar] [CrossRef]
- Virkler, K.; Lednev, I.K. Raman spectroscopic signature of semen and its potential application to forensic body fluid identification. Forensic Sci. Int. 2009, 193, 56–62. [Google Scholar] [CrossRef]
- Muro, C.K.; Doty, K.C.; de Souza Fernandes, L.; Lednev, I.K. Forensic body fluid identification and differentiation by Raman spectroscopy. Forensic Chem. 2016, 1, 31–38. [Google Scholar] [CrossRef]
- Mistek, E.; Halámková, L.; Doty, K.C.; Muro, C.K.; Lednev, I.K. Race Differentiation by Raman Spectroscopy of a Bloodstain for Forensic Purposes. Anal. Chem. 2016, 88, 7453–7456. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, G.; Doty, K.C.; Lednev, I.K. Discrimination of human and animal blood traces via Raman spectroscopy. Forensic Sci. Int. 2014, 238, 91–95. [Google Scholar] [CrossRef]
- Doty, K.C.; Lednev, I.K. Differentiation of human blood from animal blood using Raman spectroscopy: A survey of forensically relevant species. Forensic Sci. Int. 2018, 282, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Cox, M. A study of the sensitivity and specificity of four presumptive tests for blood. J. Forensic Sci. 1991, 36, 1503–1511. [Google Scholar] [CrossRef] [Green Version]
- Tobe, S.S.; Watson, N.; Daéid, N.N. Evaluation of Six Presumptive Tests for Blood, Their Specificity, Sensitivity, and Effect on High Molecular-Weight DNA. J. Forensic Sci. 2007, 52, 102–109. [Google Scholar] [CrossRef]
- Webb, J.L.; Creamer, J.I.; Quickenden, T.I. A comparison of the presumptive luminol test for blood with four non-chemiluminescent forensic techniques. Luminescence 2006, 21, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Colotelo, A.H.; Cooke, S.J.; Smokorowski, K.E. Application of forensic techniques to enhance fish conservation and management: Injury detection using presumptive tests for blood. Endanger. Species Res. 2009, 9, 169–178. [Google Scholar] [CrossRef]
- Barni, F.; Lewis, S.W.; Berti, A.; Miskelly, G.M.; Lago, G. Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta 2007, 72, 896–913. [Google Scholar] [CrossRef] [PubMed]
- Chapter 8-Presumptive and Confirmatory Blood Testing. In Forensic Science Reform; Koen, W.J.; Bowers, C.M. (Eds.) Academic Press: San Diego, CA, USA, 2017; pp. 239–269. [Google Scholar]
- Harper, L.; Powell, J.; Pijl, E.M. An overview of forensic drug testing methods and their suitability for harm reduction point-of-care services. Harm Reduct. J. 2017, 14, 52. [Google Scholar] [CrossRef] [Green Version]
- Sinelnikov, A.; Kalinina, A.; Old, J.B.; Boonlayangoor, P.W.; Reich, K.A. Evaluation of Rapid Stain IDentification (RSID™) Reader System for Analysis and Documentation of RSID™ Tests. Appl. Sci. 2013, 3, 624–635. [Google Scholar] [CrossRef] [Green Version]
- Hortolà, P. SEM examination of human erythrocytes in uncoated bloodstains on stone: Use of conventional as environmental-like SEM in a soft biological tissue (and hard inorganic material). J. Microsc. 2005, 218, 94–103. [Google Scholar] [CrossRef]
- Hortolà, P. Secondary-electron SEM bioimaging of human erythrocytes in bloodstains on high-carbon steel substrate without specimen preparation. Micron 2008, 39, 53–55. [Google Scholar] [CrossRef]
- Hortolà, P. Human Bloodstains on Biological Materials: High-Vacuum Scanning Electron Microscope Examination Using Specimens without Previous Preparation. Microsc. Microanal. 2013, 19, 415–419. [Google Scholar] [CrossRef]
- Hortolà, P. MRT letter: Human bloodstains on antique aboriginal weapons: A guiding low-vacuum sem study of erythrocytes in experimental samples on ethnographically documented biological raw materials. Microsc. Res. Tech. 2012, 75, 1007–1011. [Google Scholar] [CrossRef]
- Hortolà, P. Human bloodstains on bone artefacts: An SEM intra- and inter-sample comparative study using ratite bird tibiotarsus. Micron 2016, 90, 108–113. [Google Scholar] [CrossRef]
- Hortolà, P. Microscopic imaging of human bloodstains: Testing the potential of a confocal laser scanning microscope as an alternative to SEMs. Micron 2020, 130, 102821. [Google Scholar] [CrossRef]
- Hovis, D.; Heuer, A. The use of laser scanning confocal microscopy (LSCM) in materials science. J. Microsc. 2010, 240, 173–180. [Google Scholar] [CrossRef]
- Eyring, M.B. Fundamentals of Visible Microspectrophotometry in Forensic Science. In Forensic Science Handbook, Volume I; CRC Press: Boca Raton, FL, USA, 2020; Chapter 5; p. 55. [Google Scholar]
- Bauer, M. RNA in forensic science. Forensic Sci. Int. Genet. 2007, 1, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Patzelt, D. Evaluation of mRNA markers for the identification of menstrual blood. J. Forensic Sci. 2002, 47, 1278–1282. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Gramlich, I.; Polzin, S.; Patzelt, D. Quantification of mRNA degradation as possible indicator of postmortem interval—A pilot study. Leg. Med. 2003, 5, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Polzin, S.; Patzelt, D. Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: A possible indicator of the age of bloodstains? Forensic Sci. Int. 2003, 138, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.G.; Santucci, K.A. An Alternate Light Source to Detect Semen. Acad. Emerg. Med. 2002, 9, 1045–1048. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, U. Forensic Analysis of Semen: A Review. Int. J. Inf. Comput. Sci. 2018, 5, 81–86. [Google Scholar]
- Greenfield, A.; Sloan, M.M. Identification of Biological Fluids and Stains. In Forensic Science-An Introduction to Scientific and Investigative Techniques; CRC Press: Boca Raton, FL, USA, 2002; Chapter 12; p. 18. [Google Scholar]
- Idris, B.; Goodwin, W.H. Evaluating the sensitivity of presumptive and confirmatory tests for body fluids. Forensic Sci. Int. Genet. Suppl. Ser. 2022, 8, 276–278. [Google Scholar] [CrossRef]
- Laffan, Á.; Sawyer, I.; Quinones, I.; Daniel, B. Evaluation of semen presumptive tests for use at crime scenes. Med. Sci. Law 2011, 51, 11–17. [Google Scholar] [CrossRef]
- Maher, J.; Vintiner, S.; Elliot, D.; Melia, L. Evaluation of the BioSign PSA membrane test for the identification of semen stains in forensic casework. N. Z. Med. J. 2002, 115, 48–49. [Google Scholar] [PubMed]
- Old, J.; Schweers, B.A.; Boonlayangoor, P.W.; Fischer, B.; Miller, K.W.P.; Reich, K. Developmental Validation of RSIDTM-Semen: A Lateral Flow Immunochromatographic Strip Test for the Forensic Detection of Human Semen. J. Forensic Sci. 2012, 57, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.; Juusola, J.; Ballantyne, J. An mRNA and DNA co-isolation method for forensic casework samples. Anal. Biochem. 2004, 335, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Auvdel, M.J. Comparison of laser and high-intensity quartz arc tubes in the detection of body secretions. J. Forensic Sci. 1988, 33, 925–945. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, A.; Rehdorf, J.; Hilbers, F.; Johrdan, L.; Stribl, C.; Benecke, M. Detection of Semen (Human and Boar) and Saliva on Fabrics by a Very High Powered UV-/VIS-Light Source. Open Forensic Sci. J. 2008, 1, 12–15. [Google Scholar] [CrossRef]
- Gupta, A.K. Forensic Biology and Serology- Definitions and Concepts. 2023. Available online: http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000016FS/P000699/M011528/ET/1516257136FSC_P12_M2_e-text.pdf (accessed on 8 May 2023).
- Martin, N.; Clayson, N.; Scrimger, D. The sensitivity and specificity of Red-Starch paper for the detection of saliva. Sci. Justice 2006, 46, 97–105. [Google Scholar] [CrossRef]
- Komuro, T.; Mukoyama, R.; Mukoyama, H. Application of enzyme-linked immunosorbent assay (ELISA) to the medico-legal identification. Nihon Rinsho. Jpn. J. Clin. Med. 1995, 53, 2322–2329. [Google Scholar]
- Seta, S. Application of scanning electron microscopy and energy dispersive x-ray microanalysis to the criminal identification of body fluid stains. Int. Crim. Police Rev. 1977, 307, 119–123. [Google Scholar]
- Soukos, N.S.; Crowley, K.; Bamberg, M.P.; Gillies, R.; Doukas, A.G.; Evans, R.; Kollias, N. A rapid method to detect dried saliva stains swabbed from human skin using fluorescence spectroscopy. Forensic Sci. Int. 2000, 114, 133–138. [Google Scholar] [CrossRef]
- Old, J.B.; Schweers, B.A.; Boonlayangoor, P.W.; Reich, K.A. Developmental validation of RSID™-saliva: A lateral flow immunochromatographic strip test for the forensic detection of saliva. J. Forensic Sci. 2009, 54, 866–873. [Google Scholar] [CrossRef]
- Juusola, J.; Ballantyne, J. Multiplex mRNA profiling for the identification of body fluids. Forensic Sci. Int. 2005, 152, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lledo-Fernandez, C.; Banks, C.E. An overview of quantifying and screening drugs of abuse in biological samples: Past and present. Anal. Methods 2011, 3, 1227–1245. [Google Scholar] [CrossRef]
- Elkins, K.M.; Weghorst, A.C.; Quinn, A.A.; Acharya, S. Colour quantitation for chemical spot tests for a controlled substances presumptive test database. Drug Test. Anal. 2017, 9, 306–310. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, C.L.; Crouch, D.J.; Fatah, A.A. Validation of twelve chemical spot tests for the detection of drugs of abuse. Forensic Sci. Int. 2000, 109, 189–201. [Google Scholar] [CrossRef]
- Elie, M.P.; Elie, L.E. Microcrystalline Tests in Forensic Drug Analysis. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Li, Q.; Qiu, T.; Hao, H.; Zhou, H.; Wang, T.; Zhang, Y.; Li, X.; Huang, G.; Cheng, J. Rapid and on-site analysis of illegal drugs on the nano–microscale using a deep ultraviolet-visible reflected optical fiber sensor. Analyst 2012, 137, 1596–1603. [Google Scholar] [CrossRef] [PubMed]
- Cargill, K.; Kammrath, B.W. The identification of controlled substances by TLCSERS. In Proceedings of the 66th Annual Scientific Meeting of the American Academy of Forensic Sciences. Seattle: Forensic Sciences Foundation, Seattle, WA, USA, 17–22 February 2014. [Google Scholar]
- Kanai, K.; Takekawa, K.; Kumamoto, T.; Ishikawa, T.; Ohmori, T. Simultaneous analysis of six phenethylamine-type designer drugs by TLC, LC-MS, and GC-MS. Forensic Toxicol. 2008, 26, 6–12. [Google Scholar] [CrossRef]
- Tsai, J.S.C.; Lin, G.L. Drug-Testing Technologies and Applications. In Drugs of Abuse: Body Fluid Testing; Wong, R.C., Tse, H.Y., Eds.; Humana Press: Totowa, NJ, USA, 2005; pp. 29–69. [Google Scholar]
- Forsgard, N.; Salehpour, M.; Possnert, G. Accelerator mass spectrometry in the attomolar concentration range for 14 C-labeled biologically active compounds in complex matrixes. J. Anal. At. Spectrom. 2010, 25, 74–78. [Google Scholar] [CrossRef]
- Bunaciu, A.A.; Aboul-Enein, H.Y.; Fleschin, S. Application of Fourier transform infrared spectrophotometry in pharmaceutical drugs analysis. Appl. Spectrosc. Rev. 2010, 45, 206–219. [Google Scholar] [CrossRef]
- de Oliveira Penido, C.A.F.; Pacheco, M.T.T.; Lednev, I.K.; Silveira, L., Jr. Raman spectroscopy in forensic analysis: Identification of cocaine and other illegal drugs of abuse. J. Raman Spectrosc. 2016, 47, 28–38. [Google Scholar] [CrossRef]
- Ali, E.M.; Edwards, H.G. The detection of flunitrazepam in beverages using portable Raman spectroscopy. Drug Test. Anal. 2017, 9, 256–259. [Google Scholar] [CrossRef]
- Trzybiński, D.; Niedziałkowski, P.; Ossowski, T.; Trynda, A.; Sikorski, A. Single-crystal X-ray diffraction analysis of designer drugs: Hydrochlorides of metaphedrone and pentedrone. Forensic Sci. Int. 2013, 232, e28–e32. [Google Scholar] [CrossRef] [PubMed]
- Yeager, K. Improvised explosives characteristics, detection, and analysis. In Forensic Investigation of Explosions; CRC Press: Boca Raton, FL, USA, 2011; pp. 531–576. [Google Scholar]
- Mocella, C.; Conkling, J.A. Chemistry of Pyrotechnics: Basic Principles and Theory; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Hopler, R.B. The History, Development, and Characteristics of Explosives and Propellants. In Forensic Investigation of Explosions; CRC Press: Boca Raton, FL, USA, 2011; Chapter 1; p. 18. [Google Scholar]
- Perigrin, T. Introductory Practical Pyrotechnics; Falcon Fireworks: Guyton, GA, USA, 1999; pp. 137–171. [Google Scholar]
- De Perre, C.; Prado, A.; McCord, B.R. Rapid and specific detection of urea nitrate and ammonium nitrate by electrospray ionization time-of-flight mass spectrometry using infusion with crown ethers. Rapid Commun. Mass Spectrom. 2012, 26, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Zeman, S.; Trzciński, W.A.; Matyáš, R. Some properties of explosive mixtures containing peroxides: Part I. Relative performance and detonation of mixtures with triacetone triperoxide. J. Hazard. Mater. 2008, 154, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Zeman, S.; Bartei, C. Some properties of explosive mixtures containing peroxides: Part II. Relationships between detonation parameters and thermal reactivity of the mixtures with triacetone triperoxide. J. Hazard. Mater. 2008, 154, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Ladbeck, R.; Kolla, P.; Karst, U. Trace analysis of peroxide-based explosives. Anal. Chem. 2003, 75, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Van De Craats, A.M.; Kok, E.M.; De Bruyn, P. Trace analysis of peroxide explosives by high performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (HPLC-APCI-MS/MS) for forensic applications. J. Forensic Sci. 2004, 49, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
- Pumera, M. Trends in analysis of explosives by microchip electrophoresis and conventional CE. Electrophoresis 2008, 29, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Piccin, E.; Dossi, N.; Cagan, A.; Carrilho, E.; Wang, J. Rapid and sensitive measurements of nitrate ester explosives using microchip electrophoresis with electrochemical detection. Analyst 2009, 134, 528–532. [Google Scholar] [CrossRef]
- Cordesman, A.H. The Developing Iraqi Insurgency: Status at End-2004, Working Draft. 2004. Available online: https://www.comw.org/warreport/fulltext/0412cordesman.pdf (accessed on 8 May 2023).
- Singh, S. Sensors—An effective approach for the detection of explosives. J. Hazard. Mater. 2007, 144, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Buttigieg, G.A.; Knight, A.K.; Denson, S.; Pommier, C.; Denton, M.B. Characterization of the explosive triacetone triperoxide and detection by ion mobility spectrometry. Forensic Sci. Int. 2003, 135, 53–59. [Google Scholar] [CrossRef]
- Moore, D.S. Instrumentation for trace detection of high explosives. Rev. Sci. Instruments 2004, 75, 2499–2512. [Google Scholar] [CrossRef]
- Andrew, T.L.; Swager, T.M. Detection of explosives via photolytic cleavage of nitroesters and nitramines. J. Org. Chem. 2011, 76, 2976–2993. [Google Scholar] [CrossRef] [PubMed]
- Hill, H.H.; Simpson, G. Capabilities and limitations of ion mobility spectrometry for field screening applications. Field Anal. Chem. Technol. 1997, 1, 119–134. [Google Scholar] [CrossRef]
- Forensic Store. Pocket-ETK FS Explosives Testing Kit. 2023. Available online: https://www.forensicstore.com/product/pocket-etk-fs-explosives-testing-kit/ (accessed on 8 May 2023).
- Meditest. EXPRAY Explosives Detection Identification Field Test Kit. 2023. Available online: https://meditests.com/product/expray-explosives-detection-identification-field-test-kit-100-tests/ (accessed on 10 May 2023).
- Defence, R. XCAT Capillary Analysis Test. 2023. Available online: https://cbrnetechindex.com/SupportDocuments/b285d3fd-7be6-4c28-a1f7-0fecc6d1d516RedX-XCat.pdf (accessed on 10 May 2023).
- Peters, K. Development of Presumptive and Confirmatory Analytical Methods for the Simultaneous Detection of Multiple Improvised Explosives. Ph.D. Thesis, Florida International University, St. Miami, FL, USA, 2014. [Google Scholar]
- Cagan, A.; Schmidt, H.; Rodriguez, J.; Eiceman, G. Fast gas chromatography-differential mobility spectrometry of explosives from TATP to Tetryl without gas atmosphere modifiers. Int. J. Ion Mobil. Spectrom. 2010, 13, 157–165. [Google Scholar] [CrossRef]
- Schulte-Ladbeck, R.; Edelmann, A.; Quintas, G.; Lendl, B.; Karst, U. Determination of peroxide-based explosives using liquid chromatography with on-line infrared detection. Anal. Chem. 2006, 78, 8150–8155. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, T.; Sun, H.; Kannan, K. Perchlorate in tap water, groundwater, surface waters, and bottled water from China and its association with other inorganic anions and with disinfection byproducts. Arch. Environ. Contam. Toxicol. 2010, 58, 543–550. [Google Scholar] [CrossRef]
- Flanagan, R.J.; Perrett, D.; Whelpton, R. Electrochemical Detection in HPLC: Analysis of Drugs and Poisons; Royal Society of Chemistry: London, UK, 2005; Volume 10. [Google Scholar]
- Doyle, J.M.; Miller, M.L.; McCord, B.R.; McCollam, D.A.; Mushrush, G.W. A multicomponent mobile phase for ion chromatography applied to the separation of anions from the residue of low explosives. Anal. Chem. 2000, 72, 2302–2307. [Google Scholar] [CrossRef]
- Bender, E.C.; Beveridge, A.D. Investigation of Pipe Bombs. In Forensic Investigation of Explosions; CRC Press: Boca Raton, FL, USA, 2011; Chapter 11; pp. 431–481. [Google Scholar]
- Hutchinson, J.P.; Johns, C.; Breadmore, M.C.; Hilder, E.F.; Guijt, R.M.; Lennard, C.; Dicinoski, G.; Haddad, P.R. Identification of inorganic ions in post-blast explosive residues using portable CE instrumentation and capacitively coupled contactless conductivity detection. Electrophoresis 2008, 29, 4593–4602. [Google Scholar] [CrossRef] [PubMed]
- Burks, R.M.; Hage, D.S. Current trends in the detection of peroxide-based explosives. Anal. Bioanal. Chem. 2009, 395, 301–313. [Google Scholar] [CrossRef]
- Berk, R.E. Automated SEM/EDS Analysis of Airbag Residue.* I: Particle Identification. J. Forensic Sci. 2009, 54, 60–68. [Google Scholar] [CrossRef]
- Berk, R.E. Automated SEM/EDS analysis of airbag residue. II: Airbag residue as a source of percussion primer residue particles. J. Dorensic Sci. 2009, 54, 69–76. [Google Scholar] [CrossRef]
- Prabhakar, P.; Sen, R.K.; Dwivedi, N.; Khan, R.; Solanki, P.R.; Mishra, S.; Srivastava, A.K.; Dhand, C. 3D-Printed Microfluidic Device with Integrated Biosensors for Biomedical Applications. In Advanced Microfluidics Based Point-of-Care Diagnostics; CRC Press: Boca Raton, FL, USA, 2022; Chapter 6; pp. 148–166. [Google Scholar]
- Yager, P.; Edwards, T.; Fu, E.; Helton, K.; Nelson, K.; Tam, M.R.; Weigl, B.H. Microfluidic diagnostic technologies for global public health. Nature 2006, 442, 412–418. [Google Scholar] [CrossRef]
- Katoch, V.; Prakash, B. The Basic Concept for Microfluidics-Based Devices. In Advanced Microfluidics Based Point-of-Care Diagnostics; CRC Press: Boca Raton, FL, USA, 2022; Chapter 1; pp. 1–38. [Google Scholar]
- Vashist, S.K.; Mudanyali, O.; Schneider, E.M.; Zengerle, R.; Ozcan, A. Cellphone-based devices for bioanalytical sciences. Anal. Bioanal. Chem. 2014, 406, 3263–3277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beduk, T.; Beduk, D.; Hasan, M.R.; Guler Celik, E.; Kosel, J.; Narang, J.; Salama, K.N.; Timur, S. Smartphone-based multiplexed biosensing tools for health monitoring. Biosensors 2022, 12, 583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tian, Z.; Bachman, H.; Zhang, P.; Huang, T.J. A cell-phone-based acoustofluidic platform for quantitative point-of-care testing. ACS Nano 2020, 14, 3159–3169. [Google Scholar] [CrossRef]
- Isiksacan, Z.; Guler, M.T.; Aydogdu, B.; Bilican, I.; Elbuken, C. Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation. J. Micromech. Microeng. 2016, 26, 035008. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, Z.; Hou, Z.; Song, J. Processing and Profile Control of Microhole Array for PDMS Mask with Femtosecond Laser. Micromachines 2022, 13, 340. [Google Scholar] [CrossRef]
- Behroodi, E.; Latifi, H.; Bagheri, Z.; Ermis, E.; Roshani, S.; Salehi Moghaddam, M. A combined 3D printing/CNC micro-milling method to fabricate a large-scale microfluidic device with the small size 3D architectures: An application for tumor spheroid production. Sci. Rep. 2020, 10, 22171. [Google Scholar] [CrossRef] [PubMed]
- Opalski, A.S.; Makuch, K.; Derzsi, L.; Garstecki, P. Split or slip–passive generation of monodisperse double emulsions with cores of varying viscosity in microfluidic tandem step emulsification system. RSC Adv. 2020, 10, 23058–23065. [Google Scholar] [CrossRef]
- Goral, V.N.; Hsieh, Y.C.; Petzold, O.N.; Faris, R.A.; Yuen, P.K. Hot embossing of plastic microfluidic devices using poly (dimethylsiloxane) molds. J. Micromech. Microeng. 2010, 21, 017002. [Google Scholar] [CrossRef]
- Narasimhan, J.; Papautsky, I. Rapid fabrication of hot embossing tools using PDMS. Proc. SPIE 2003, 4982, 110–119. [Google Scholar]
- Khan, M.S.; Lachmayer, R.; Roth, B. Maskless lithography for versatile and low cost fabrication of polymer based micro optical structures. OSA Contin. 2020, 3, 2808–2816. [Google Scholar] [CrossRef]
- Ma, X.; Li, R.; Jin, Z.; Fan, Y.; Zhou, X.; Zhang, Y. Injection molding and characterization of PMMA-based microfluidic devices. Microsyst. Technol. 2020, 26, 1317–1324. [Google Scholar] [CrossRef]
- Jeon, J.S.; Chung, S.; Kamm, R.D.; Charest, J.L. Hot embossing for fabrication of a microfluidic 3D cell culture platform. Biomed. Microdevices 2011, 13, 325–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Y.; Kreutz, J.E.; Schneider, T.; Yen, G.S.; Shah, E.S.; Wu, L.; Chiu, D.T. A reinforced PDMS mold for hot embossing of cyclic olefin polymer in the fabrication of microfluidic chips. Lab Chip 2022, 22, 4729–4734. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. 2007, 119, 1340–1342. [Google Scholar] [CrossRef]
- Sen, A.K.; Nath, A.; Sudeepthi, A.; Jain, S.K.; Banerjee, U. Microfluidics-Based Point-of-Care Diagnostic Devices. In Advanced Microfluidics Based Point-of-Care Diagnostics; CRC Press: Boca Raton, FL, USA, 2022; Chapter 4; pp. 99–120. [Google Scholar]
- Wang, X.; Cheng, C.; Wang, S.; Liu, S. Electroosmotic pumps and their applications in microfluidic systems. Microfluid. Nanofluidics 2009, 6, 145–162. [Google Scholar] [CrossRef] [Green Version]
- Guttenberg, Z.; Müller, H.; Habermüller, H.; Geisbauer, A.; Pipper, J.; Felbel, J.; Kielpinski, M.; Scriba, J.; Wixforth, A. Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 2005, 5, 308–317. [Google Scholar] [CrossRef]
- Garcia, A.A.; Egatz-Gomez, A.; Lindsay, S.A.; Dominguez-Garcia, P.; Melle, S.; Marquez, M.; Rubio, M.A.; Picraux, S.; Yang, D.; Aella, P.; et al. Magnetic movement of biological fluid droplets. J. Magn. Magn. Mater. 2007, 311, 238–243. [Google Scholar] [CrossRef]
- Chiou, P.; Park, S.Y.; Wu, M.C. Continuous optoelectrowetting for picoliter droplet manipulation. Appl. Phys. Lett. 2008, 93, 221110. [Google Scholar] [CrossRef] [Green Version]
- Gervais, L.; De Rooij, N.; Delamarche, E. Microfluidic chips for point-of-care immunodiagnostics. Adv. Mater. 2011, 23, H151–H176. [Google Scholar] [CrossRef] [PubMed]
- Gubala, V.; Harris, L.F.; Ricco, A.J.; Tan, M.X.; Williams, D.E. Point of care diagnostics: Status and future. Anal. Chem. 2012, 84, 487–515. [Google Scholar] [CrossRef]
- Lynn, N.S.; Dandy, D.S. Passive microfluidic pumping using coupled capillary/evaporation effects. Lab Chip 2009, 9, 3422–3429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalili, A.; Samiei, E.; Hoorfar, M. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: Microfluidic approaches. Analyst 2019, 144, 87–113. [Google Scholar] [CrossRef]
- Lenshof, A.; Ahmad-Tajudin, A.; Jarås, K.; Sward-Nilsson, A.M.; Åberg, L.; Marko-Varga, G.; Malm, J.; Lilja, H.; Laurell, T. Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal. Chem. 2009, 81, 6030–6037. [Google Scholar] [CrossRef]
- Dow, P.; Kotz, K.; Gruszka, S.; Holder, J.; Fiering, J. Acoustic separation in plastic microfluidics for rapid detection of bacteria in blood using engineered bacteriophage. Lab Chip 2018, 18, 923–932. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Y.; Wang, X.B.; Becker, F.F.; Gascoyne, P.R. Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophys. J. 2000, 78, 2680–2689. [Google Scholar] [CrossRef] [Green Version]
- Dungchai, W.; Chailapakul, O.; Henry, C.S. Electrochemical detection for paper-based microfluidics. Anal. Chem. 2009, 81, 5821–5826. [Google Scholar] [CrossRef]
- Sanjay, S.T.; Fu, G.; Dou, M.; Xu, F.; Liu, R.; Qi, H.; Li, X. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst 2015, 140, 7062–7081. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gao, Y.; Yin, Y.; Pan, Y.; Wang, Y.; Song, Y. Nanomaterial-assisted microfluidics for multiplex assays. Microchim. Acta 2022, 189, 139. [Google Scholar] [CrossRef]
- Du, W.; Li, L.; Nichols, K.P.; Ismagilov, R.F. SlipChip. Lab Chip 2009, 9, 2286–2292. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Crooks, R.M. Paper-based SlipPAD for high-throughput chemical sensing. Anal. Chem. 2013, 85, 4263–4267. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.; Wang, Y.; Magaud, P.; Liu, Y.; Zeng, F.; Yang, J.; Baldas, L.; Song, Y. Nanocatalysis meets microfluidics: A powerful platform for sensitive bioanalysis. TrAC Trends Anal. Chem. 2023, 158, 116887. [Google Scholar] [CrossRef]
- Seetasang, S.; Kaneta, T. Analytical Devices with Instrument-Free Detection Based on Paper Microfluidics. In Advanced Microfluidics Based Point-of-Care Diagnostics; CRC Press: Boca Raton, FL, USA, 2022; Chapter 10; pp. 249–269. [Google Scholar]
- Radhapyari, K.; Aribam, N.G.; Datta, S.; Dutta, S.; Barman, R.; Khan, R. Chromatographic Separation and Visual Detection on Wicking Microfluidics Devices. In Advanced Microfluidics Based Point-of-Care Diagnostics; CRC Press: Boca Raton, FL, USA, 2022; Chapter 14; pp. 339–364. [Google Scholar]
- Li, H.; Steckl, A.J. Paper microfluidics for point-of-care blood-based analysis and diagnostics. Anal. Chem. 2018, 91, 352–371. [Google Scholar] [CrossRef] [PubMed]
- Lepowsky, E.; Ghaderinezhad, F.; Knowlton, S.; Tasoglu, S. Paper-based assays for urine analysis. Biomicrofluidics 2017, 11, 051501. [Google Scholar] [CrossRef] [PubMed]
- Yetisen, A.K.; Akram, M.S.; Lowe, C.R. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 2013, 13, 2210–2251. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Piety, N.Z.; Vignes, S.M.; Benton, M.S.; Kanter, J.; Shevkoplyas, S.S. Simple paper-based test for measuring blood hemoglobin concentration in resource-limited settings. Clin. Chem. 2013, 59, 1506–1513. [Google Scholar] [CrossRef] [Green Version]
- Nie, Z.; Deiss, F.; Liu, X.; Akbulut, O.; Whitesides, G.M. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 2010, 10, 3163–3169. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Ge, L.; Huang, J.; Wang, S.; Ge, S. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 2011, 11, 1286–1291. [Google Scholar] [CrossRef]
- Delaney, J.L.; Hogan, C.F.; Tian, J.; Shen, W. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal. Chem. 2011, 83, 1300–1306. [Google Scholar] [CrossRef]
- Rankin-Turner, S.; Turner, M.A.; Kelly, P.F.; King, R.S.P.; Reynolds, J.C. Transforming presumptive forensic testing: In situ identification and age estimation of human bodily fluids. Chem. Sci. 2019, 10, 1064–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozayani, A.; Noziglia, C. The Forensic Laboratory Handbook Procedures and Practice; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Harbison, S.; Fleming, R. Forensic body fluid identification: State of the art. Res. Rep. Forensic Med. Sci. 2016, 6, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Vidaki, A.; Kayser, M. From forensic epigenetics to forensic epigenomics: Broadening DNA investigative intelligence. Genome Biol. 2017, 18, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cromartie, R.L.; Wardlow, A.; Duncan, G.; McCord, B.R. Development of a microfluidic device (μPADs) for forensic serological analysis. Anal. Methods 2019, 11, 587–595. [Google Scholar] [CrossRef]
- Ansari, N.; Trambadiya, N.; Lodha, A.; Menon, S. A portable microfluidic paper-based analytical device for blood detection and typing assay. Aust. J. Forensic Sci. 2021, 53, 407–418. [Google Scholar] [CrossRef]
- Quinn, A.A.; Elkins, K.M. The differentiation of menstrual from venous blood and other body fluids on various substrates using ATR FT-IR spectroscopy. J. Forensic Sci. 2017, 62, 197–204. [Google Scholar] [CrossRef]
- Layne, T.R.; Nouwairi, R.L.; Fleming, R.; Blair, H.; Landers, J.P. Rapid Microchip Electrophoretic Separation of Novel Transcriptomic Body Fluid Markers for Forensic Fluid Profiling. Micromachines 2022, 13, 1657. [Google Scholar] [CrossRef]
- Roeder, A.D.; Haas, C. Body Fluid Identification Using mRNA Profiling. In Forensic DNA Typing Protocols; Goodwin, W., Ed.; Springer: New York, NY, USA, 2016; pp. 13–31. [Google Scholar]
- O’Leary, K.R.; Glynn, C.L. Investigating the isolation and amplification of microRNAs for forensic body fluid identification. MicroRNA 2018, 7, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Mayes, C.; Seashols-Williams, S.; Hughes-Stamm, S. A capillary electrophoresis method for identifying forensically relevant body fluids using miRNAs. Leg. Med. 2018, 30, 1–4. [Google Scholar] [CrossRef]
- Liu, B.; Song, F.; Yang, Q.; Zhou, Y.; Shao, C.; Shen, Y.; Zhao, Z.; Tang, Q.; Hou, Y.; Xie, J. Characterization of tissue-specific biomarkers with the expression of circRNAs in forensically relevant body fluids. Int. J. Leg. Med. 2019, 133, 1321–1331. [Google Scholar] [CrossRef]
- Song, F.; Luo, H.; Xie, M.; Zhu, H.; Hou, Y. Microarray expression profile of circular RNAs in human body fluids. Forensic Sci. Int. Genet. Suppl. Ser. 2017, 6, e55–e56. [Google Scholar] [CrossRef] [Green Version]
- Albani, P.P.; Fleming, R. Novel messenger RNAs for body fluid identification. Sci. Justice 2018, 58, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.L.; Ouyang, Y.; Duarte, G.R.; Carrilho, E.; Krauss, S.T.; Landers, J.P. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method. Nat. Protoc. 2015, 10, 875–886. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.M. Advanced Topics in Forensic DNA Typing: Methodology; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- U.S.D. of Justice Federal Bureau of Investigation Science; Branch, T. Guide to All Things Rapid DNA. 2022. Available online: http://www.lsp.org/pdf/FBI_Guide_to_All_Things_Rapid_DNA_01_27_2022.pdf (accessed on 12 May 2023).
- Horsman, K.M.; Bienvenue, J.M.; Blasier, K.R.; Landers, J.P. Forensic DNA analysis on microfluidic devices: A review. J. Forensic Sci. 2007, 52, 784–799. [Google Scholar] [CrossRef]
- Bruijns, B.; Knotter, J.; Tiggelaar, R. A Systematic Review on Commercially Available Integrated Systems for Forensic DNA Analysis. Sensors 2023, 23, 1075. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Johnson, M.; Hill, P.; Gale, B.K. Microfluidic sample preparation: Cell lysis and nucleic acid purification. Integr. Biol. 2009, 1, 574–586. [Google Scholar] [CrossRef]
- Di Carlo, D.; Jeong, K.H.; Lee, L.P. Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab Chip 2003, 3, 287–291. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, J.H.; Lim, H.K.; Cho, E.C.; Huh, N.; Ko, C.; Park, J.C.; Choi, J.W.; Lee, S.S. Electrochemical cell lysis device for DNA extraction. Lab Chip 2010, 10, 626–633. [Google Scholar] [CrossRef]
- Gac, S.L.; van den Berg, A. Cell Capture and Lysis on a Chip. In Unravelling Single Cell Genomics; The Royal Society of Chemistry: London, UK, 2010; Chapter 12; pp. 150–184. [Google Scholar]
- Kutter, J.P.; Jacobson, S.C.; Ramsey, J.M. Solid phase extraction on microfluidic devices. J. Microcolumn Sep. 2000, 12, 93–97. [Google Scholar] [CrossRef]
- Price, C.W.; Leslie, D.C.; Landers, J.P. Nucleic acid extraction techniques and application to the microchip. Lab Chip 2009, 9, 2484–2494. [Google Scholar] [CrossRef] [PubMed]
- Reinholt, S.J.; Baeumner, A.J. Microfluidic isolation of nucleic acids. Angew. Chem. Int. Ed. 2014, 53, 13988–14001. [Google Scholar] [CrossRef]
- Tian, H.; Hühmer, A.F.; Landers, J.P. Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format. Anal. Biochem. 2000, 283, 175–191. [Google Scholar] [CrossRef] [Green Version]
- Duarte, G.R.; Price, C.W.; Augustine, B.H.; Carrilho, E.; Landers, J.P. Dynamic solid phase DNA extraction and PCR amplification in polyester-toner based microchip. Anal. Chem. 2011, 83, 5182–5189. [Google Scholar] [CrossRef]
- Chong, K.W.Y.; Thong, Z.; Syn, C.K.C. Recent trends and developments in forensic DNA extraction. Wiley Interdiscip. Rev. Forensic Sci. 2021, 3, e1395. [Google Scholar] [CrossRef]
- Clark, C.; Turiello, R.; Cotton, R.; Landers, J.P. Analytical approaches to differential extraction for sexual assault evidence. Anal. Chim. Acta 2021, 1141, 230–245. [Google Scholar] [CrossRef] [PubMed]
- Norris, J.V.; Evander, M.; Horsman-Hall, K.M.; Nilsson, J.; Laurell, T.; Landers, J.P. Acoustic differential extraction for forensic analysis of sexual assault evidence. Anal. Chem. 2009, 81, 6089–6095. [Google Scholar] [CrossRef] [PubMed]
- Belgrader, P.I.; Yuan, B. Sonication to Selectively Lyse Different Cell Types. U.S. Patent 7,785,869, 31 August 2010. [Google Scholar]
- Inci, F.; Ozen, M.O.; Saylan, Y.; Miansari, M.; Cimen, D.; Dhara, R.; Chinnasamy, T.; Yuksekkaya, M.; Filippini, C.; Kumar, D.K.; et al. A novel on-Chip method for differential extraction of sperm in forensic cases. Adv. Sci. 2018, 5, 1800121. [Google Scholar] [CrossRef] [PubMed]
- Kopp, M.U.; Mello, A.J.d.; Manz, A. Chemical amplification: Continuous-flow PCR on a chip. Science 1998, 280, 1046–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Ozdemir, P. Microfluidic DNA amplification—A review. Anal. Chim. Acta 2009, 638, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jiang, H.R. A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future. Anal. Chim. Acta 2016, 914, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Theberge, A.B.; Courtois, F.; Schaerli, Y.; Fischlechner, M.; Abell, C.; Hollfelder, F.; Huck, W.T. Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Ed. 2010, 49, 5846–5868. [Google Scholar] [CrossRef]
- Gu, H.; Duits, M.H.; Mugele, F. Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 2011, 12, 2572–2597. [Google Scholar] [CrossRef] [Green Version]
- Ahrberg, C.D.; Manz, A.; Chung, B.G. Polymerase chain reaction in microfluidic devices. Lab Chip 2016, 16, 3866–3884. [Google Scholar] [CrossRef] [Green Version]
- Estes, M.D.; Yang, J.; Duane, B.; Smith, S.; Brooks, C.; Nordquist, A.; Zenhausern, F. Optimization of multiplexed PCR on an integrated microfluidic forensic platform for rapid DNA analysis. Analyst 2012, 137, 5510–5519. [Google Scholar] [CrossRef]
- DuVall, J.A.; Le Roux, D.; Thompson, B.L.; Birch, C.; Nelson, D.A.; Li, J.; Mills, D.L.; Tsuei, A.C.; Ensenberger, M.G.; Sprecher, C.; et al. Rapid multiplex DNA amplification on an inexpensive microdevice for human identification via short tandem repeat analysis. Anal. Chim. Acta 2017, 980, 41–49. [Google Scholar] [CrossRef]
- Cornelis, S.; Tytgat, O.; Fauvart, M.; Gansemans, Y.; Vander Plaetsen, A.S.; Wiederkehr, R.S.; Deforce, D.; Van Nieuwerburgh, F.; Stakenborg, T. Silicon μPCR chip for forensic STR profiling with hybeacon probe melting curves. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Landers, J.P. Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Nouwairi, R.L.; O’Connell, K.C.; Gunnoe, L.M.; Landers, J.P. Microchip electrophoresis for fluorescence-based measurement of polynucleic acids: Recent developments. Anal. Chem. 2020, 93, 367–387. [Google Scholar] [CrossRef]
- Sang, F.; Ren, J. Capillary electrophoresis of double-stranded DNA fragments using a new fluorescence intercalating dye EvaGreen. J. Sep. Sci. 2006, 29, 1275–1280. [Google Scholar] [CrossRef]
- Hopwood, A.J.; Hurth, C.; Yang, J.; Cai, Z.; Moran, N.; Lee-Edghill, J.G.; Nordquist, A.; Lenigk, R.; Estes, M.D.; Haley, J.P.; et al. Integrated microfluidic system for rapid forensic DNA analysis: Sample collection to DNA profile. Anal. Chem. 2010, 82, 6991–6999. [Google Scholar] [CrossRef]
- Bruijns, B.; Tiggelaar, R.; Gardeniers, H. A microfluidic approach for biosensing DNA within forensics. Appl. Sci. 2020, 10, 7067. [Google Scholar] [CrossRef]
- Pehrsson, A.; Blencowe, T.; Vimpari, K.; Langel, K.; Engblom, C.; Lillsunde, P. An evaluation of on-site oral fluid drug screening devices DrugWipe® 5+ and rapid STAT® using oral fluid for confirmation analysis. J. Anal. Toxicol. 2011, 35, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Greenway, G.M.; Nelstrop, L.J.; Port, S.N. Tris (2, 2-bipyridyl) ruthenium (II) chemiluminescence in a microflow injection system for codeine determination. Anal. Chim. Acta 2000, 405, 43–50. [Google Scholar] [CrossRef]
- Ribeiro, M.F.M.; Bento, F.; Ipolito, A.J.; de Oliveira, M.F. Development of a pencil drawn paper-based analytical device to detect Lysergic Acid Diethylamide (LSD). J. Forensic Sci. 2020, 65, 2121–2128. [Google Scholar] [CrossRef]
- Musile, G.; Wang, L.; Bottoms, J.; Tagliaro, F.; McCord, B. The development of paper microfluidic devices for presumptive drug detection. Anal. Methods 2015, 7, 8025–8033. [Google Scholar] [CrossRef]
- Krauss, S.T.; Remcho, T.P.; Lipes, S.M.; Aranda, R., IV; Maynard, H.P., III; Shukla, N.; Li, J.; Tontarski, R.E., Jr.; Landers, J.P. Objective method for presumptive field-testing of illicit drug possession using centrifugal microdevices and smartphone analysis. Anal. Chem. 2016, 88, 8689–8697. [Google Scholar] [CrossRef]
- Bruijns, B.; Veciana, A.; Tiggelaar, R.; Gardeniers, H. Cyclic olefin copolymer microfluidic devices for forensic applications. Biosensors 2019, 9, 85. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, T.L.E.; Leong, T.X.; Bliese, S.L.; Helmke, A.; Richard, A.; Merga, G.; Rorabeck, J.; Lieberman, M. idPAD: Paper analytical device for presumptive identification of illicit drugs. J. Forensic Sci. 2020, 65, 1289–1297. [Google Scholar] [CrossRef]
- Hermann, T.; Patel, D.J. Adaptive recognition by nucleic acid aptamers. Science 2000, 287, 820–825. [Google Scholar] [CrossRef] [Green Version]
- Stojanovic, M.N.; de Prada, P.; Landry, D.W. Fluorescent sensors based on aptamer self-assembly. J. Am. Chem. Soc. 2000, 122, 11547–11548. [Google Scholar] [CrossRef]
- Stojanovic, M.N.; De Prada, P.; Landry, D.W. Aptamer-based folding fluorescent sensor for cocaine. J. Am. Chem. Soc. 2001, 123, 4928–4931. [Google Scholar] [CrossRef]
- Baker, B.R.; Lai, R.Y.; Wood, M.S.; Doctor, E.H.; Heeger, A.J.; Plaxco, K.W. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J. Am. Chem. Soc. 2006, 128, 3138–3139. [Google Scholar] [CrossRef] [PubMed]
- Swensen, J.S.; Xiao, Y.; Ferguson, B.S.; Lubin, A.A.; Lai, R.Y.; Heeger, A.J.; Plaxco, K.W.; Soh, H.T. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. J. Am. Chem. Soc. 2009, 131, 4262–4266. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Musile, G.; McCord, B.R. An aptamer-based paper microfluidic device for the colorimetric determination of cocaine. Electrophoresis 2018, 39, 470–475. [Google Scholar] [CrossRef]
- Kawano, R.; Osaki, T.; Sasaki, H.; Takinoue, M.; Yoshizawa, S.; Takeuchi, S. Rapid detection of a cocaine-binding aptamer using biological nanopores on a chip. J. Am. Chem. Soc. 2011, 133, 8474–8477. [Google Scholar] [CrossRef]
- Mobini Far, H.R.; Torabi, F.; Danielsson, B.; Khayyami, M. ELISA on a microchip with a photodiode for detection of amphetamine in plasma and urine. J. Anal. Toxicol. 2005, 29, 790–793. [Google Scholar]
- Miyaguchi, H.; Takahashi, H.; Ohashi, T.; Mawatari, K.; Iwata, Y.T.; Inoue, H.; Kitamori, T. Rapid analysis of methamphetamine in hair by micropulverized extraction and microchip-based competitive ELISA. Forensic Sci. Int. 2009, 184, 1–5. [Google Scholar] [CrossRef]
- Tian, T.; Wei, X.; Jia, S.; Zhang, R.; Li, J.; Zhu, Z.; Zhang, H.; Ma, Y.; Lin, Z.; Yang, C.J. Integration of target responsive hydrogel with cascaded enzymatic reactions and microfluidic paper-based analytic devices (μPADs) for point-of-care testing (POCT). Biosens. Bioelectron. 2016, 77, 537–542. [Google Scholar] [CrossRef]
- Yang, G.; Liu, H. Application of monolithic stationary phases in solid-phase extraction and pharmaceutical analysis. Curr. Pharm. Anal. 2010, 6, 213–224. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Zeng, P.; Cao, Q. A butyl methacrylate monolithic column prepared in situ on a microfluidic chip and its applications. Sensors 2009, 9, 3437–3446. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Wang, E. Separation and detection of narcotic drugs on a microchip using micellar electrokinetic chromatography and electrochemiluminescence. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2008, 20, 643–647. [Google Scholar] [CrossRef]
- Qiang, W.; Zhai, C.; Lei, J.; Song, C.; Zhang, D.; Sheng, J.; Ju, H. Disposable microfluidic device with ultraviolet detection for highly resolved screening of illicit drugs. Analyst 2009, 134, 1834–1839. [Google Scholar] [CrossRef]
- Bai, H.Y.; Lin, S.L.; Chan, S.A.; Fuh, M.R. Characterization and evaluation of two-dimensional microfluidic chip-HPLC coupled to tandem mass spectrometry for quantitative analysis of 7-aminoflunitrazepam in human urine. Analyst 2010, 135, 2737–2742. [Google Scholar] [CrossRef]
- United States Department of State Publication Bureau of Counterterrorism; Extremism, C.V. Country Reports on Terrorism 2015. 2016. Available online: https://2009-2017.state.gov/documents/organization/258249.pdf (accessed on 12 May 2023).
- Verpoorte, E. Microfluidic chips for clinical and forensic analysis. Electrophoresis 2002, 23, 677–712. [Google Scholar] [CrossRef]
- Wang, J.; Polsky, R.; Tian, B.; Chatrathi, M.P. Voltammetry on microfluidic chip platforms. Anal. Chem. 2000, 72, 5285–5289. [Google Scholar] [CrossRef] [PubMed]
- Hilmi, A.; Luong, J.H. Electrochemical detectors prepared by electroless deposition for microfabricated electrophoresis chips. Anal. Chem. 2000, 72, 4677–4682. [Google Scholar] [CrossRef]
- Wang, J.; Tian, B.; Sahlin, E. Micromachined electrophoresis chips with thick-film electrochemical detectors. Anal. Chem. 1999, 71, 5436–5440. [Google Scholar] [CrossRef]
- Peters, K.L.; Corbin, I.; Kaufman, L.M.; Zreibe, K.; Blanes, L.; McCord, B.R. Simultaneous colorimetric detection of improvised explosive compounds using microfluidic paper-based analytical devices (μPADs). Anal. Methods 2015, 7, 63–70. [Google Scholar] [CrossRef]
- Pesenti, A.; Taudte, R.V.; McCord, B.; Doble, P.; Roux, C.; Blanes, L. Coupling paper-based microfluidics and lab on a chip technologies for confirmatory analysis of trinitro aromatic explosives. Anal. Chem. 2014, 86, 4707–4714. [Google Scholar] [CrossRef] [PubMed]
- Salles, M.O.; Meloni, G.N.; De Araujo, W.; Paixão, T.R.L.C.d. Explosive colorimetric discrimination using a smartphone, paper device and chemometrical approach. Anal. Methods 2014, 6, 2047–2052. [Google Scholar] [CrossRef]
- Chabaud, K.R.; Thomas, J.L.; Torres, M.N.; Oliveira, S.; McCord, B.R. Simultaneous colorimetric detection of metallic salts contained in low explosives residue using a microfluidic paper-based analytical device (μPAD). Forensic Chem. 2018, 9, 35–41. [Google Scholar] [CrossRef]
- Boyd-Moss, M.; Baratchi, S.; Di Venere, M.; Khoshmanesh, K. Self-contained microfluidic systems: A review. Lab Chip 2016, 16, 3177–3192. [Google Scholar] [CrossRef] [PubMed]
Test Name | Reagent | Color Change | Pros | Cons |
---|---|---|---|---|
Luminol | 5-Amino-2,3-dihydro-1,4-phthalazinedione | Colorless -> chemiluminescent blue light emission | Great sensitivity1 Great specificity2 Do not destroy DNA Can be reapplied Not carcinogenic | Must be used in near/complete darkness |
Leuchomalachite green (LMG) | Reduced LMG | Colorless -> blue/green | As specific as Luminol | 10-times less sensitivity than Luminol Can destroy DNA Carcinogenic |
Kestle–Meyer (KL) | Reduced phenolphthalein | Colorless -> bright pink | Equal sensitivity to most of other tests | Extremely unspecific Can reduce amount of recoverable DNA Possible carcinogen |
Hemastix® | 3,3, 5,5-Tetramethylbenzidine (TMB) | Orange -> dark blue/green | Easy to transport/use Good sensitivity DNA can be recovered Not carcinogenic | Not very unspecific |
HemidentTM | MacPhail’s reagent (leuchomalachite green) | Colorless -> blue/green | Specific Sensitive Self-contained chemical reaction | Can destroy DNA |
Bluestar© | Similar as luminol | Colorless -> chemiluminescent blue | Good sensitivity Ease of preparation Long-lasting solution | Poor specificity Possible false positives Need for complete darkness |
Class of Drugs | Example | Effect |
---|---|---|
Central nervous system (CNS) depressants | Alcohol, barbiturates, gamma hydroxybutyrate (GHB), benzodiazepines | Slowing down the operations of brain and body |
CNS stimulants | Amphetamines, cocaine, “crack” cocaine, methamphetamines (“crack”) | Over-stimulating the body by accelerating the heart rate and increasing blood pressure |
Narcotic analgesics | Opium, heroin, morphine, methadone, oxycontin, codeine | Relieving pain by disabling brain’s perception of the pain, creating mood change and inducing euphoria |
Psychotomimetics or hallucinogens | Lysergic acid diethylamide (LSD), methylenedioxymethamphetamine (MDMA) or ecstasy, psilocybin, mescaline | Mimicking the symptoms of psychosis, inducing delusions |
Cannabis | Marijuana, synthetic cannabinoids | Causing psychological and physiological effects |
Type of Explosives | Example | Requirements and/or Effects |
---|---|---|
Low explosives: Combustible materials with reaction rates < speed of sound (3000 m/s) (subsonic) | Black powder (consisting of potassium nitrate, charcoal, and sulfur), smokeless powder | Upon reaction hot gases and inorganic residues are formed. Commonly contained in sealed casings to cause pressure build up. |
High explosives: Reaction rates > speed of sound (detonation) without dependency on confinement | Primary explosives, e.g., mercury fulminate, lead azide, and triacetone triperoxide (TATP) | Sensitive to friction, shock, and heat |
Secondary explosives, e.g., TNT, nitroglycerin (NG), and cyclotrimethylenetrinitramene (RDX) | Increased stability with less sensitivity to heat or shock. Primary explosives are needed to provide large energy input for detonation | |
Blasting agents: Mixture of fuel and oxidizers prepared from fertilizers | Ammonium nitrate (AN) and urea nitrate (UN) | Less sensitive and require a booster to detonate |
General Field | Specific Application | Opportunities and/or Advantages |
---|---|---|
Analytical platforms | Miniaturized counterpart of bulky columns for chromatography and mass spectrometry | Small concentration and volume of sample Fast results |
Reaction and flow chemistry | Synthesis of materials through reactions occurring in microchannels | Industrial-scale material production |
Point-of-care diagnostics | Diagnostics at place (home or remote areas) | No need for laboratory and trained personnel |
Drug delivery | Invasive drug delivery using micro needles, inhalers or micropumps | Precise delivery of small amount of drug at targeted areas |
Environmental testing | Inspection of water, air, or food quality to identify contaminants | Real-time monitoring Protecting health and safety of society |
Biomedical research | Discovery and screening of new drugs Cell analysis Single cell sequencing | In situ synthesis and investigation of genes and proteins Biological mechanisms, metabolism, RNA, DNA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazyar, H. On the Application of Microfluidic-Based Technologies in Forensics: A Review. Sensors 2023, 23, 5856. https://doi.org/10.3390/s23135856
Bazyar H. On the Application of Microfluidic-Based Technologies in Forensics: A Review. Sensors. 2023; 23(13):5856. https://doi.org/10.3390/s23135856
Chicago/Turabian StyleBazyar, Hanieh. 2023. "On the Application of Microfluidic-Based Technologies in Forensics: A Review" Sensors 23, no. 13: 5856. https://doi.org/10.3390/s23135856
APA StyleBazyar, H. (2023). On the Application of Microfluidic-Based Technologies in Forensics: A Review. Sensors, 23(13), 5856. https://doi.org/10.3390/s23135856