Joint Model-Order and Robust DoA Estimation for Underwater Sensor Arrays
Abstract
:1. Introduction
1.1. DoA Estimation Algorithms: Background
1.2. Compressive Sensing (CS) Theory and CS-Based DoA Estimation
1.3. Contributions and Organization
- A modified OMP algorithm for DoA estimation is proposed that does not require a priori knowledge of the source order. The algorithm is shown to work for both the single- and multi-snapshot cases and the corresponding estimators are termed as Model-Order and DoA Estimator using OMP (MODE-OMP) and MODE-SOMP for the single- and multi-snapshot cases, respectively.
- The proposed DoA estimators also use a modified stopping criterion to incorporate the effects of faulty array sensors and low received SNR to furnish accurate DoA estimates under these conditions.
- The DoA estimation performance gain of the proposed algorithms is shown in relation to other notable CS-based techniques in terms of the root mean squared error (RMSE) of the DoA estimates and the probability of target resolution, for different error scenarios relevant to underwater acoustic array deployment.
2. System Model under the CS Framework
2.1. Signal Model
2.2. CS-Based DoA Estimation for a Single Snapshot
2.3. OMP Algorithm for DoA Estimation
Algorithm 1 Standard OMP Algorithm OMP-(Std) |
|
2.4. CS-Based DoA Estimation for Multiple Snapshots
Algorithm 2 Standard Simultaneous OMP Algorithm SOMP-(Std) |
|
3. Practical Error Models
3.1. Faulty Sensors
3.2. Low SNR
3.3. Model-Order Estimation Errors
4. Proposed MODE-OMP and MODE-SOMP Algorithms for Joint Model-Order and DoA Estimation
Algorithm 3 MODE-OMP Algorithm |
|
Algorithm 4 MODE-SOMP Algorithm |
|
5. Simulation Results
5.1. SCENARIO 1: Six Faulty Sensors at Positions 3, 5, 9, 12, 15, and 18
5.2. SCENARIO 2: Ten Faulty Sensors at Positions 3, 5, 7, 9, 12, 15, 16, 18, 22, and 23
5.3. SCENARIO 3: Six Faulty Sensors at Positions 3, 4, 11, 13, 21, and 24, and Unequal Signal Strengths
5.4. SCENARIO 4: Unknown Number and Positions of Faulty Sensors
5.5. Probability of Target Resolution
5.6. Time Cost of Considered DoA Estimation Algorithms
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jouhari, M.; Ibrahimi, K.; Tembine, H.; Ben-Othman, J. Underwater wireless sensor networks: A survey on enabling technologies, localization protocols, and internet of underwater things. IEEE Access 2019, 7, 96879–96899. [Google Scholar] [CrossRef]
- Mary, D.R.K.; Ko, E.; Kim, S.G.; Yum, S.H.; Shin, S.Y.; Park, S.H. A systematic review on recent trends, challenges, privacy and security issues of underwater internet of things. Sensors 2021, 21, 8262. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, S.; Wang, Z. Underwater distributed antenna systems: Design opportunities and Challenges. IEEE Commun. Mag. 2018, 56, 178–185. [Google Scholar] [CrossRef]
- Schinault, M.E.; Penna, S.M.; Garcia, H.A.; Ratilal, P. Investigation and Design of a Towable Hydrophone Array for General Ocean Sensing. In Proceedings of the OCEANS 2019-Marseille, Marseille, France, 17–20 June 2019; pp. 1–5. [Google Scholar]
- Chiariotti, P.; Martarelli, M.; Castellini, P. Acoustic beamforming for noise source localization—Reviews, methodology and applications. Mech. Syst. Signal Process. 2019, 120, 422–448. [Google Scholar] [CrossRef]
- Zhu, C.; Seri, S.G.; Mohebbi-Kalkhoran, H.; Ratilal, P. Long-range automatic detection, acoustic signature characterization and bearing-time estimation of multiple ships with coherent hydrophone array. Remote Sens. 2020, 12, 3731. [Google Scholar] [CrossRef]
- Benesty, J.; Cohen, I.; Chen, J. Array Processing; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Yan, S. Broadband Array Processing; Springer: Singapore, 2019; Volume 17. [Google Scholar]
- Dey, N.; Ashour, A.S. Direction of Arrival Estimation and Localization of Multi-Speech Sources; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Kılıç, B.; Arıkan, O. Capon’s Beamformer and Minimum Mean Square Error Beamforming Techniques in Direction of Arrival Estimation. In Proceedings of the 2021 29th Signal Processing and Communications Applications Conference (SIU), Istanbul, Turkey, 9–11 June 2021; pp. 1–4. [Google Scholar]
- Jeong, S.H.; Son, B.k.; Lee, J.H. Asymptotic performance analysis of the MUSIC algorithm for direction-of-arrival estimation. Appl. Sci. 2020, 10, 2063. [Google Scholar] [CrossRef] [Green Version]
- Gentilho, E.; Scalassara, P.R.; Abrão, T. Direction-of-arrival estimation methods: A performance-complexity tradeoff perspective. J. Signal Process. Syst. 2020, 92, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Imtiaj, S.; Misra, I.S.; Bhattacharya, S. Revisiting smart antenna array design with multiple interferers using basic adaptive beamforming algorithms: Comparative performance study with testbed results. Eng. Rep. 2021, 3, e12295. [Google Scholar] [CrossRef]
- Yu, L.; Fan, Y.; Wei, Y.; Xu, R. Robust adaptive beamforming method for large-scale array with automatic diagonal loading and steering vector estimation. J. Eng. 2019, 2019, 8047–8050. [Google Scholar] [CrossRef]
- Salama, A.A. Compressive Sensing Based Estimation of Direction of Arrival in Antenna Arrays. Ph.D. Thesis, Concordia University, Montreal, QC, Canada, 2017. [Google Scholar]
- Ibrahim, M. Applications of Compressive Sensing to Direction of Arrival Estimation. Ph.D. Thesis, Universitätsbibliothek, Frankfurt am Main, Germany, 2018. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Rani, M.; Dhok, S.B.; Deshmukh, R.B. A systematic review of compressive sensing: Concepts, implementations and applications. IEEE Access 2018, 6, 4875–4894. [Google Scholar] [CrossRef]
- Choo, Y.; Park, Y.; Seong, W. Detection of Direction-Of-Arrival in Time Domain Using Compressive Time Delay Estimation with Single and Multiple Measurements. Sensors 2020, 20, 5431. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.J.; Wang, Y. Sparse Solutions of Underdetermined Linear Systems and Their Applications; SIAM: Philadelphia, PA, USA, 2021. [Google Scholar]
- Marques, E.C.; Maciel, N.; Naviner, L.; Cai, H.; Yang, J. A review of sparse recovery algorithms. IEEE Access 2018, 7, 1300–1322. [Google Scholar] [CrossRef]
- Srinivas, K.; Ganguly, S.; Kishore Kumar, P. Performance comparison of reconstruction algorithms in compressive sensing based single snapshot doa estimation. IETE J. Res. 2020, 68, 2876–2884. [Google Scholar] [CrossRef]
- Abeida, H.; Zhang, Q.; Li, J.; Merabtine, N. Iterative sparse asymptotic minimum variance based approaches for array processing. IEEE Trans. Signal Process. 2012, 61, 933–944. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Huang, L.T.; So, H.C. Selective range iterative adaptive approach for high-resolution DOA estimation. IEEE Access 2019, 7, 15634–15640. [Google Scholar] [CrossRef]
- Afkhaminia, F.; Azghani, M. Sparsity-based DOA estimation of 2-D rectangular array in the presence of gain and phase uncertainty. Circuits Syst. Signal Process. 2021, 40, 5014–5032. [Google Scholar] [CrossRef]
- Zuo, W.; Xin, J.; Zheng, N.; Ohmori, H.; Sano, A. Subspace-based near-field source localization in unknown spatially nonuniform noise environment. IEEE Trans. Signal Process. 2020, 68, 4713–4726. [Google Scholar] [CrossRef]
- Qiu, W.; Wang, W.; Zhou, Z.; Wu, Y.; Deng, K.; Lei, P.; Zhang, L. Acoustic array single snapshot beamforming via compressed sensing. In Proceedings of the OCEANS 2016, Shanghai, China, 10–13 April 2016; pp. 1–4. [Google Scholar]
- Lee, C.F.G. Robust Direction-of-Arrival Estimation in the Presence of Faulty Elements in a Uniform Linear Antenna Array. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2019. [Google Scholar]
- Sun, B.; Wu, C.; Shi, J.; Ruan, H.L.; Ye, W.Q. Direction-of-arrival estimation under array sensor failures with ULA. IEEE Access 2019, 8, 26445–26456. [Google Scholar] [CrossRef]
- Yao, G.; Zhang, H.; Li, L.; Hu, F. The ORLS-Based DoA Estimation for Unknown Mixtures of Uncorrelated and Coherent Signals Under Unknown Number of Sources. IEEE Signal Process. Lett. 2021, 28, 1105–1109. [Google Scholar] [CrossRef]
- Zhao, F.; Hu, G.; Zhou, H.; Guo, S. Research on Underdetermined DOA Estimation Method with Unknown Number of Sources Based on Improved CNN. Sensors 2023, 23, 3100. [Google Scholar] [CrossRef]
- Liu, L.; Rao, Z. An Adaptive Lp Norm Minimization Algorithm for Direction of Arrival Estimation. Remote Sens. 2022, 14, 766. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, S.; Shi, Y.R.; Shi, Y.W. Direction of Arrival Estimation by Matching Pursuit Algorithm With Subspace Information. IEEE Access 2021, 9, 16937–16946. [Google Scholar] [CrossRef]
- Wen, J.; Yi, J.; Wan, X. Off-grid DOA estimation for passive radar. In Proceedings of the IET International Radar Conference, Online, 4–6 November 2021. [Google Scholar]
- Mirza, H.A.; Aslam, L.; Raja, M.A.Z.; Chaudhary, N.I.; Qureshi, I.M.; Malik, A.N. A New Computing Paradigm for Off-Grid Direction of Arrival Estimation Using Compressive Sensing. Wirel. Commun. Mob. Comput. 2020, 2020, 9280198. [Google Scholar] [CrossRef]
- Ma, L.; Gulliver, T.A.; Zhao, A.; Ge, C.; Bi, X. Underwater broadband source detection using an acoustic vector sensor with an adaptive passive matched filter. Appl. Acoust. 2019, 148, 162–174. [Google Scholar] [CrossRef]
- Yin, F.; Li, C.; Wang, H.; Yang, F. Automatic acoustic target detecting and tracking on the azimuth recording diagram with image processing methods. Sensors 2019, 19, 5391. [Google Scholar] [CrossRef] [Green Version]
- Leif, B. Applied Underwater Acoustics; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Joseph, J.V.; Radhakrishnan, N.; Ambat, S.K. Effect of Element Failures on the Performance of Passive Towed Array Sonars. Acoust. Aust. 2019, 47, 165–173. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, J.; Yang, Z.; Qiu, T. Off-Grid DOA Estimation Using Sparse Bayesian Learning for MIMO Radar under Impulsive Noise. Sensors 2022, 22, 6268. [Google Scholar] [CrossRef]
- Mirza, H.A.; Raja, M.A.Z.; Chaudhary, N.I.; Qureshi, I.M.; Malik, A.N. A robust multi sample compressive sensing technique for DOA estimation using sparse antenna array. IEEE Access 2020, 8, 140848–140861. [Google Scholar] [CrossRef]
- Ma, F.; Bai, H.; Zhang, X.; Xu, C.; Li, Y. Generalised maximum complex correntropy-based DOA estimation in presence of impulsive noise. IET Radar Sonar Navig. 2020, 14, 793–802. [Google Scholar] [CrossRef]
- Shang, J.; Wang, Z.; Huang, Q. A robust algorithm for joint sparse recovery in presence of impulsive noise. IEEE Signal Process. Lett. 2015, 22, 1166–1170. [Google Scholar] [CrossRef]
- Shen, Q.; Liu, W.; Cui, W.; Wu, S.; Pal, P. Simplified and enhanced multiple level nested arrays exploiting high-order difference co-arrays. IEEE Trans. Signal Process. 2019, 67, 3502–3515. [Google Scholar] [CrossRef]
- Tan, Z.; Eldar, Y.C.; Nehorai, A. Direction of arrival estimation using co-prime arrays: A super resolution viewpoint. IEEE Trans. Signal Process. 2014, 62, 5565–5576. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhao, L.; Li, Y.; Jing, X.; Truong, T.K. A sparse-based approach for DOA estimation and array calibration in uniform linear array. IEEE Sens. J. 2016, 16, 6018–6027. [Google Scholar] [CrossRef]
- Liang, G.; Shi, Z.; Qiu, L.; Sun, S.; Lan, T. Sparse Bayesian Learning Based Direction-of-Arrival Estimation under Spatially Colored Noise Using Acoustic Hydrophone Arrays. J. Mar. Sci. Eng. 2021, 9, 127. [Google Scholar] [CrossRef]
- Eldar, Y.C.; Kutyniok, G. Compressed Sensing: Theory and Applications; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Li, H.; Wang, L.; Zhan, X.; Jain, D.K. On the fundamental limit of orthogonal matching pursuit for multiple measurement vector. IEEE Access 2019, 7, 48860–48866. [Google Scholar] [CrossRef]
- Determe, J.F.; Louveaux, J.; Jacques, L.; Horlin, F. On the exact recovery condition of simultaneous orthogonal matching pursuit. IEEE Signal Process. Lett. 2015, 23, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Determe, J.F.; Louveaux, J.; Jacques, L.; Horlin, F. On the noise robustness of simultaneous orthogonal matching pursuit. IEEE Trans. Signal Process. 2016, 65, 864–875. [Google Scholar] [CrossRef]
- Cox, H.; Lai, H. Effects of failed elements on sidelobes of array beampatterns. J. Acoust. Soc. Am. 2015, 137, 3377–3384. [Google Scholar] [CrossRef]
- Abraham, D.A. Sonar Systems and the Sonar Equation. In Underwater Acoustic Signal Processing; Springer: Cham, Switzerland, 2019; pp. 33–93. [Google Scholar]
- Hamid, U.; Wyne, S.; Ali, S. On High Angular Resolution Processing for Multiple Targets Detection in Passive Underwater Sensor Array Systems. In Proceedings of the 2021 OES China Ocean Acoustics (COA), Harbin, China, 14–17 July 2021; pp. 873–878. [Google Scholar]
- Allcott, N. Fault detection and fault related performance degradation in sonar arrays. In Proceedings of the CCECE’97, Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery, St. John’s, NF, Canada, 25–28 May 1997; Volume 2, pp. 571–577. [Google Scholar]
- O’Mara, D.; Gear, G.; McMahon, D.R. Automated Self-Noise Monitoring and Acoustic Fault Detection; UDT: Jeju-si, Republic of Korea, 2002; Available online: https://www.researchgate.net/profile/Darryl-Mcmahon-2/publication/319242244_Automated_self-noise_monitoring_and_acoustic_fault_detection/links/599d4b1445851574f4b1a66b/Automated-self-noise-monitoring-and-acoustic-fault-detection.pdf (accessed on 13 May 2023).
- Kim, Y.G.; Jeon, K.M.; Kim, Y.; Choi, C.H.; Kim, H.K. A lossless compression method incorporating sensor fault detection for underwater acoustic sensor array. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717747846. [Google Scholar] [CrossRef] [Green Version]
- Dziwoki, G. Averaged properties of the residual error in sparse signal reconstruction. IEEE Signal Process. Lett. 2016, 23, 1170–1173. [Google Scholar] [CrossRef]
- Fouladi, S.H.; Chiu, S.E.; Rao, B.D.; Balasingham, I. Recovery of independent sparse sources from linear mixtures using sparse Bayesian learning. IEEE Trans. Signal Process. 2018, 66, 6332–6346. [Google Scholar] [CrossRef]
- Yu, Q.; Lei, Z.; Hu, H.; An, J.; Chen, W. A novel 2D off-grid DOA estimation method based on compressive sensing and least square optimization. IEEE Access 2019, 7, 113596–113604. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Chen, P. Compressed sensing-based DOA estimation with antenna phase errors. Electronics 2019, 8, 294. [Google Scholar] [CrossRef] [Green Version]
- Zuo, M.; Xie, S.; Zhang, X.; Yang, M. DOA estimation based on weighted l1-norm sparse representation for low SNR scenarios. Sensors 2021, 21, 4614. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, N.; Zhang, X.; Zhao, X.; Zhang, Y.; Qiu, T. DOA Estimation for Massive MIMO Systems with Unknown Mutual Coupling Based on Block Sparse Bayesian Learning. Sensors 2022, 22, 8634. [Google Scholar] [CrossRef]
- Delos, P.; Broughton, B.; Kraft, J. Phased array antenna patterns-part 1: Linear array beam characteristics and array factor. Analog Dialogue 2020, 54, 1–3. [Google Scholar]
- Reddy, V.V.; Mubeen, M.; Ng, B.P. Reduced-complexity super-resolution DOA estimation with unknown number of sources. IEEE Signal Process. Lett. 2014, 22, 772–776. [Google Scholar] [CrossRef]
- Hu, P.; Bao, Q.; Chen, Z. DOA estimation method in multipath environment for passive bistatic radar. Int. J. Antennas Propag. 2019, 2019, 7419156. [Google Scholar] [CrossRef]
- Shi, W.; Li, Y. Improved uniform linear array fitting scheme with increased lower bound on uniform degrees of freedom for DOA estimation. IEEE Trans. Instrum. Meas. 2022, 71, 1–14. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, T.; Liu, C.; Wang, D. A Space-Time Adaptive Processing Method Based on Sparse Bayesian Learning for Maneuvering Airborne Radar. Sensors 2022, 22, 5479. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Wang, T.; Wang, D.; Liu, C. An Improved Iterative Reweighted STAP Algorithm for Airborne Radar. Remote Sens. 2022, 15, 130. [Google Scholar] [CrossRef]
Number of Faulty Sensors | Positions of Faulty Sensors | 1st Side-Lobe Level (dB) |
---|---|---|
Nil (healthy array) | Nil (healthy array) | −13.25 |
1 | 9 | −11.25 |
3 | 7, 12, 16 | −9.32 |
6 | 3, 5, 9, 12, 15, 18 | −7.65 |
10 | 3, 5, 7, 9, 12, 15, 16, 18, 22, 23 | −5.71 |
Target Type | Range (Km) | SL (dB) | NL (dB) | TL (dB) | AG (dB) | SNR (dB) |
---|---|---|---|---|---|---|
Submarine | 20 | 110 | 60 | 87 | 14 | −23 |
Frigate Ship | 100 | 135 | 60 | 102 | 14 | −13 |
SNR (dB) | OMP-(Std) + True L | MODE-OMP | IAA | MFOCUSS |
---|---|---|---|---|
10 | 5 | 5 | 5 | 48 |
0 | 5 | 5 | 5 | 48 |
−10 | 5 | 5 | 5 | 48 |
−15 | 5 | 5 | 5 | 48 |
SNR (dB) | SOMP-(Std) + True L | SOMP-(Std) + MDL | MODE-SOMP | IAA | MFOCUSS |
---|---|---|---|---|---|
10 | 5 | 5 | 5 | 5 | 48 |
0 | 5 | 5 | 5 | 5 | 48 |
−10 | 5 | 2 | 5 | 5 | 48 |
−15 | 5 | 1 | 5 | 5 | 48 |
SNR (dB) | SOMP-(Std) + True L | SOMP-(Std) + MDL | MODE-SOMP | IAA | MFOCUSS |
---|---|---|---|---|---|
10 | 5 | 5 | 4 | 5 | 48 |
0 | 5 | 5 | 4 | 5 | 48 |
−10 | 5 | 2 | 4 | 5 | 48 |
−15 | 5 | 1 | 4 | 5 | 48 |
SNR (dB) | SOMP-(Std) + True L | SOMP-(Std) + MDL | MODE-SOMP | IAA | MFOCUSS |
---|---|---|---|---|---|
10 | 5 | 5 | 5 | 5 | 48 |
−15 | 5 | 1 | 5 | 5 | 48 |
SNR (dB) | SOMP-(Std) + True L | SOMP-(Std) + MDL | MODE-SOMP | IAA | MFOCUSS |
---|---|---|---|---|---|
10 | 5 | 5 | 5 | 5 | 48 |
0 | 5 | 5 | 5 | 5 | 48 |
−10 | 5 | 2 | 5 | 5 | 48 |
−15 | 5 | 1 | 5 | 5 | 48 |
SNR (dB) | SOMP-(Std) + True L | SOMP-(Std) + MDL | MODE-SOMP | IAA | MFOCUSS |
---|---|---|---|---|---|
10 | 0.0074 | 0.0074 | 0.0085 | 0.1125 | 0.0694 |
−15 | 0.0078 | 0.0022 | 0.0082 | 0.1087 | 0.0836 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamid, U.; Wyne, S.; Butt, N.R. Joint Model-Order and Robust DoA Estimation for Underwater Sensor Arrays. Sensors 2023, 23, 5731. https://doi.org/10.3390/s23125731
Hamid U, Wyne S, Butt NR. Joint Model-Order and Robust DoA Estimation for Underwater Sensor Arrays. Sensors. 2023; 23(12):5731. https://doi.org/10.3390/s23125731
Chicago/Turabian StyleHamid, Umar, Shurjeel Wyne, and Naveed Razzaq Butt. 2023. "Joint Model-Order and Robust DoA Estimation for Underwater Sensor Arrays" Sensors 23, no. 12: 5731. https://doi.org/10.3390/s23125731
APA StyleHamid, U., Wyne, S., & Butt, N. R. (2023). Joint Model-Order and Robust DoA Estimation for Underwater Sensor Arrays. Sensors, 23(12), 5731. https://doi.org/10.3390/s23125731