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Abstract: In array signal processing, the direction of arrivals (DOAs) of the received signals are estimated
by measuring the relative phases among antennas; hence, the estimation performance is reduced
by the inconsistency among antennas. In this paper, the DOA estimation problem of the uniform
linear array (ULA) is investigated in the scenario with phase errors among the antennas, and a
diagonal matrix composed of phase errors is used to formulate the system model. Then, by using the
compressed sensing (CS) theory, we convert the DOA estimation problem into a sparse reconstruction
problem. A novel reconstruction method is proposed to estimate both the DOA and the unknown
phase errors, iteratively. The phase errors are calculated by a gradient descent method with the
theoretical expressions. Simulation results show that the proposed method is cost-efficient and
outperforms state-of-the-art methods regarding the DOA estimation with unknown phase errors.
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1. Introduction

The direction of arrival (DOA) estimation is an important problem in array signal processing, and
has a wide range of applications in the communication, radar, and sonar fields [1–3]. The conventional
beamforming (CBF) method, also known as the Bartlett beamforming method [4], is the earliest known
array-based spatial spectrum estimation algorithm. CBF extends the Fourier-based method of the
spectrum estimation in the time domain to the spatial domain, and the angular resolution of CBF
is limited by the "Rayleigh limit". To improve the resolution performance, methods based on the
time-domain nonlinear estimation method have been proposed, such as the maximum entropy method
(MEM) [5] and the minimum variance method (MVM) [6]. Furthermore, the subspace-based methods
have been proposed in [7] to improve DOA estimation performance, including the multiple signal
classification (MUSIC) method [8], Root-MUSIC method [9,10], and the estimating signal parameters
via rotational invariance techniques (ESPRIT) method [11].

Additionally, the least squares-ESPRIT method [12,13] provides superior resolution and is
asymptotically unbiased and efficient. More recently, maximum likelihood (ML) methods [14,15], the
weighted subspace fitting method [16], and multi-dimensional MUSIC method [17] have also been
proposed for DOA estimation. The research of ML-based methods is developing rapidly—for example,
Ref. [18] proposes an alternating projection (AP) method to solve the optimal solution of the likelihood
function with lower computational complexity.

The compressed sensing (CS) theory [19] asserts that, from far fewer samples than traditional
methods used, one can recover certain signals, which means that the signal is uniformly sampled
at or above the Nyquist rate. The theory of compressed sensing [20] mainly includes three aspects:
the sparse representation of the signal, the design of the observation matrix, and the reconstruction
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algorithm. The design of the observation matrix is the key to ensuring the quality of signal sampling.
The observation matrices are mainly divided into two categories, one of them being the random
observation matrix, and the local Fourier observation matrix is a typical random matrix which can
reconstruct the original signal very well [21].

By studying the uniqueness of the `0 norm solution, and the equivalence of `1 and `0 norm
solutions, Donoho first gave a sufficient condition that the `1 norm solution can correspond to only
the most sparse solution [22], and transformed a non-deterministic polynomial problems (NP-hard
problem) into a convex optimization problem. These contributions make it not only possible, but
feasible in reality to reconstruct the sparse signal. Later, Donoho proposed the concepts of “Compressed
Sensing” [20] and “Compressive Sampling” [23], so that the theory of compressed sensing [19,24] was
formally established.

Sparse representation provides a new perspective of DOA estimation, and has attracted lots of
interest [25]. By exploiting the sparsity of targets in the spatial domain, the corresponding algorithms
have been proposed to estimate DOA. The sparse Bayesian learning (SBL) [26–28] and the relevance
vector machine (RVM) [29] were proposed. The SBL method achieves a sparser solution without the
additional parameters; however, the high computational complexity of SBL methods means there
are limitations to its practical application. Combining this with the application of the CS theory in
radar signal processing, an iterative adaptive approach (IAA) [30] was proposed to achieve higher
resolution. When the IAA algorithm is applied to Space-Time Adaptive Processing, a high-resolution
clutter spectrum can be obtained without training the distance gate [31–33]. The `1-singular value
decomposition method (`1-SVD) [34–36] is also proposed to solve the problem of excessive computation
of the `1 norm method in the case of faster beat, and estimates the spatial spectrum using the sparse
signal reconstruction. However, the estimation performance of `1-SVD method reduces with decreasing
Signal to Noise Ratio (SNR). The orthogonal matching pursuit method (OMP), which is used in [8],
reconstructs the sparse signal with an observation matrix. The multiple orthogonal matching pursuit
(MOMP) [8] and optimized orthogonal matching pursuit (OOMP) [37] based on the OMP method
were also proposed. The OMP methods greatly reduce the computational complexity and improves
the estimation performance.

Since the DOA is estimated by measuring the relative phases among antennas, the channel phase
inconsistency cannot be ignored in the practical scenarios. Phase errors among antennas have a
significant effect on the performance of DOA estimation. To solve this problem, Ref. [38] proposed a
calibration algorithm to estimate the calibration matrix consisting of the unknown phase errors and a
set of calibration sources. An eigenstructure-based method for direction-finding in the presence of
phase uncertainties is also presented in [39–41] proposed a method based on the eigendecomposition
of the covariance and conjugate matrices. However, these methods are difficult to use in practical
scenarios owing to the high computational complexity.

In this paper, the problem of DOA estimation is investigated in a scenario with unknown phase
errors among the antennas. By using a diagonal matrix, the sparse-based system model with additional
phase errors is formulated. Then, the DOA estimation problem is converted into a sparse reconstruction
problem using the CS theory. To improve the estimation performance, a novel reconstruction method
is proposed, where both the DOA and the unknown phase errors are estimated iteratively. We also
calculate the phase errors using a gradient descent method with the theoretical expressions. Finally,
we compare the DOA estimation performance of the proposed method with state-of-the-art methods.
In summary, we make the following contributions:

• The sparse-based system model with unknown phase errors: A system model using a diagonal
matrix with phase errors among antennas is formulated, and converts the DOA estimation
problem into a sparse reconstruction problem.

• The CS-based DOA estimation method with unknown phase errors: A novel CS-based
DOA estimation method is proposed to estimate both the phase errors and DOA, iteratively.



Electronics 2019, 8, 294 3 of 12

The proposed method is cost-effective and can achieve a better performance than state-of-the-art
methods regarding the DOA estimation with unknown phase errors.

• The theoretical expressions of the gradient descent method: In the proposed method, the phase
errors are estimated by a gradient descent method iteratively with the theoretical expressions.

The remainder of this paper is organized as follows. The uniform linear array (ULA) system
model with phase errors is elaborated in Section 2. The proposed sparse method with unknown phase
errors is presented in Section 3. Simulation results are given in Section 4. Finally, Section 5 concludes
the paper.

Notations: Capital letters in boldface denotes matrices, and lowercase letters denotes vectors. ‖ · ‖F
denotes the Frobenius norm. (·)T denotes the matrix transpose. (·)H denotes the Hermitian transpose.
CN×M denotes the set of N ×M matrices with the entries being complex numbers. IN denotes an
N × N identity matrix. For a vector a, diag{a} denotes a diagonal matrix with the diagonal entries
from a. For a matrix B, vec{B} is a linear transformation which converts B into a column vector. For a
vector a, an denotes the n−th entry of a.

2. System Model for DOA Estimation with Phase Errors

2.1. Ideal System without Phase Errors

In this paper, we adopt a ULA system to solve the DOA estimation problem. This system is
supposed to have N antennas, with inter-distance d. As shown in Figure 1, K unknown signals are
received by these arrays, and the k-th signal (k = 0, 1, . . . , K− 1) has an arrival angle θk.

As shown in Figure 1, the phase difference of any two adjacent received signals is:

∆φ =
2πdsinθ

λ
, (1)

where λ is the signal wavelength.
Firstly, consider the situation of one signal, where sn(t) denotes the n-th received signal at time t.

sn(t) = s(t− nτ), (2)

where τ is the time interval at which two antennas receive signals.
The received signal can also be written as:

s(t) = z(t)ej2π f0t, (3)

where f0 is the signal frequency.
Thus,

s(t− τ) = z(t− τ)ej2π f0(t−τ)

= s(t)e−j2π f0τ

= s(t)e−j∆φ

, (4)

where ∆φ = 2π f0τ.
Substituting (4) into (2)

sn(t) = s(t)e−jn∆φ, (5)

from (1) and (5), we observe that signals received by all antenna arrays are:
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y(t) =


e−j2π f0τ0

e−j2π f0τ1

...

e−j2π f0τn

 s(t) =


1

e−j 2πdsinθ
λ

...

e−j 2π(N−1)dsinθ
λ

 s(t)

= As(t)

, (6)

Now, considering two unknown signals s1(t) and s2(t), signals received by the n-th antenna
element can be expressed as:

yn(t) = e−j 2π(n−1)dsinθ
λ s1(t) + e−j 2π(n−1)dsinθ

λ s2(t)

=
[

e−j 2π(n−1)dsinθ1
λ e−j 2π(n−1)dsinθ2

λ

] [ s1(t)
s2(t)

]
, (7)

Therefore, the signals received in total can be written as:

Y = AS + N, (8)

where A ,
[

a(θ0), a(θ1), . . . , a(θK−1)
]
, a(θk) ,

[
1, e−j2π d

λ sin(θk), . . . , e−j2π
(N−1)d

λ sin(θk)
]

denotes the

steering vector for the k-th signal. S ,
[
s0, s1, . . . , sM−1

]
∈ CK×M, Y ,

[
y0, y1, . . . , yM−1

]
∈ CN×M,

and N ∈ CN×M denotes the additive white Gaussian noise (AWGN).

d d

ϴ ϴ ϴ

SK(t) SK(t) SK(t) SK(t)

ϴ

ϴ ϴ ϴ ϴ

SK+1(t)SK+1(t)SK+1(t)SK+1(t)

Figure 1. The system for DOA estimation.

2.2. System Model with Phase Errors

The unknown phase errors among antennas are not considered in the system model in (9).
When we take phase errors into this system model, the received signals are expressed as:

Y = ΓAS + N, (9)

where the matrix of the phase error is defined as a diagonal matrix Γ , diag{γ}, γ ,[
e−jφ0 , e−jφ1 , . . . , e−jφN−1

]T
, and φn denotes the phase error of the n-th receiving antenna and φ ,[

φ0, φ1, . . . , φN−1

]T
.

Finally, with the received signal Y , the DOA estimation system model with phase errors can
be expressed in (9). The direction vector of the signal will be estimated through the method with
parameters A and signals S in the following sections.
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3. Sparse-Based Algorithm for DOA Estimation

In this section, a novel direction-finding method based on the Simultaneous Orthogonal Matching
Pursuit (SOMP) [42] method is proposed in a scenario with phase errors. SOMP [42] is a multiple
measurement vector (MMV) extension of the OMP algorithm. With less strict requirements on the
signal sparsity, this method can realize the recovery of sparse signals by increasing the number of
measurement vectors. The details about the proposed DOA estimation method with unknown phase
errors is given in Algorithm 1.

At Step 4 of Algorithm 1, the estimated sparse matrix X̂ is updated by using the SOMP method.
The SOMP method for the sparse reconstruction is given in Algorithm 2. The SOMP algorithm is an
iterative procedure, and in each iteration of the SOMP method an atom is selected, and the residual is
updated. The next was selected to maximize the correlation with the current residual. In this method,
we use ĜA as the dictionary matrix instead of A.

At Step 7 of Algorithm 1, we use a gradient descent method to update the phase errors. A gradient
descent is a first-order iterative optimization algorithm applied in finding the minimum of a function.
Steps proportional to the negative of the gradient (or approximate gradient) of the function at the
current point are taken to find a local minimum of a function using gradient descent. We use the
following Lemma to derive the gradient descent method.

Algorithm 1 The proposed algorithm to estimate the DOAs in the scenario with phase errors among
the antennas.

1: Input: received signal R, the dictionary matrix A, the number of signals K, the step length p, and

the number of iterations t.
2: Initialization: the iteration indices i1 = 1, the phase error matrix G = IN .

3: while i1 ≤ t do

4: Obtain the estimated sparse matrix X̂ by using the SOMP method. In this method, we use ĜA

as the dictionary matrix instead of A.

5: Z = ‖R− ĜAX̂‖2
F.

6: Obtain ∂Z(φ)
∂φ

H
from (14).

7: φ = φ− p ∂Z(φ)
∂φ

H
.

8: Set all the elements of the matrix φ = 0, except the maximum.

9: end while
10: Output: the estimated sparse matrix X̂.

In order to get the steepest descent direction, the derivation is required. The received signal vector
y can be expressed in another form as:

y = vec{Y} =


(ΓA)1,:S1

(ΓA)2,:S2
...

(ΓA)M,:SM

 =


B1

B2
...

BM

ψ = Bψ, (10)

where B = diag{AS}.
To get the exact step of every iteration, we define the following objective function:

f (φ) , ‖y− ΓAS‖2
2

= (y− Bψ)H(y− Bψ)

= yHy− yHBψ− (Bψ)Hy + (Bψ)HBψ,

(11)
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and the derivation of f (φ) can be expressed as:

∂ f (φ)

∂φ
= −yHB

∂ψ

∂φ
− yT ∂(Bψ)∗

∂φ

+ BψH ∂ψ

∂φ
+ (Bψ)T ∂(Bψ)∗

∂φ

= −yHB
∂ψ

∂φ
− yTB∗

∂ψ∗

∂φ

+ (Bψ)H ∂ψ

∂φ
+ (Bψ)TB∗

∂ψ∗

∂φ
,

(12)

Additionally, the derivation of ∂ψ∗

∂φ is:

∂ψ∗

∂φ
=

(
∂ψ

∂φ

)∗
, (13)

where ψR is the real part of ψ, and ψI is the image part. Therefore, (12) can be expressed as:

∂ f (φ)

∂φ
= −2Re

{
yHB

∂ψ

∂φ

}
+ 2Re

{
(Bψ)HB

∂ψ

∂φ

}
= 2Re

{
[(Bψ)HB− yHB]

∂ψ

∂φ

}
,

(14)

where
∂ψ

∂φ
= diag

{
∂ejφ1

∂φ1
,

∂ejφ2

∂φ2
, . . . ,

∂ejφN

∂φN

}
, (15)

and
∂ejφi

∂φi
= jejφi . (16)

We adopted p ∂ f (φ)
∂φ as the step for every iteration, where p is a fixed step.

Algorithm 2 SOMP algorithm to estimate the DOAs

1: Input: received signal Y , the dictionary matrix A, the number of signals K.

2: Initialization: the iteration indices t = 1, set of index for column vector of A in the t-th iteration

Λt = ∅, the set of columns of matrix A selected by index At = ∅, root mean squared error R0 = Y .

3: while t ≤ K do

4: λt=arg maxj
∣∣〈Rt−1, αj

〉∣∣.
5: Λt = Λt−1 ∪ {λ}t.

6: At = [At−1, αλt ].

7: θ̂t =arg minθ‖Y − Atθt‖ = A−1Y , where A−1 = (AH
t At)−1 AH

t .

8: Rt = Y − Atθ̂t = Y − A−1Y .

9: t← t + 1.

10: end while
11: Output: the estimated sparse vector X̂.
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4. Simulation Results

In this section, the simulation results about the proposed method for DOA estimation in the ULA
system with unknown phase errors are given, and the simulation parameters are given in Table 1.
All experiments were carried out in MATLAB R2018b on a PC with a 2.4 GHz Intel Core i7 and 8 GB
of RAM.

• FISTA: fast iterative shrinkage-thresholding algorithm method proposed in [43]. FISTA provided
a new resolution to realize the forward-backward splitting method (also known as the proximal
gradient method) splitting to a broad range of problems appearing in sparse recovery, MMV

problems, and many other aspects. Whether the problem solved is simple or complex, FISTA
simplifies it efficiently by handling issues like stepsize selection, acceleration, and stopping
conditions.

• OGSBI: the off-grid sparse Bayesian inference method proposed in [44]. The OGSBI method deals
with the off-grid DOA estimation problem and uses an iterative algorithm based on the off-grid
model from a Bayesian perspective, while joint sparsity among different snapshots is exploited
by assuming a Laplace prior for signals at all snapshots. The OGSBI method applies to both
single-snapshot and multi-snapshot cases and has high estimation accuracy, even under a very
coarse sampling grid.

• SOMP: for compressed sensing, the critical thing is to extend from the single-measurement vector
(SMV) problem to the MMV problem.

SOMP, which can recover signals by increasing the number of measurement vectors, is an MMV
extension of OMP.

These methods are widely used in DOA estimation, so we made a comparison on the performance
of these methods with the proposed method.

The number of antennas, samples, and signals and the value of SNRs are typical simulation
parameters. Reference [45] also used these parameters. As a result, we chose these variables as our
simulation parameters. After the received signal is generated in the simulation process, phase errors
are randomly added to the arrival angels to establish the antenna array model with phase errors.
In this paper, we assumed the values of phase errors were from 25◦ to 35◦. These phase errors are
described as a uniform distribution between 25◦ to 35◦. The noise given in this paper is the AWGN.

The simulation results of the paper were obtained after multiple Monte Carlo trials. By using the
given parameters in the paper, we can reproduce the results.

For different phase errors existed in antennas, where from Figure 2 we can see the corresponding
performance of DOA estimation using the proposed method and the SOMP method. The root-mean-
square error (RMSE) was used to measure the DOA estimation performance.

RMSE ,

√
∑Ni−1

i=1

∥∥θ̂i − θi
∥∥2

2
KNi

, (17)

where with the i-th experiment, θi is the vector of a truly received signal, θ̂i is that with estimation DOA,
and Ni is the number of the experiment. In Figure 2, we show the DOA estimation performance with
different values of SNR. With the SNR being 20 dB, the DOA estimation performance with different
numbers of antennas is given in Figure 2. As shown in this figure, more antennas brings about a better
performance of DOA estimation. When the number of antennas reaches 20, the proposed method
achieves the best performance. Furthermore, the proposed method achieves a greater improvement
compared with the traditional method including SOMP, FISTA, and OGSBI.

We show the DOA estimation performance with different numbers of phase errors in Figure 3.
The number of phase errors refers to the number of antennas with large phase errors in the array.
Not each antenna is associated with the phase error. In this paper, we assumed 2–4 antennas in ten
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had large phase errors, and phase errors of other antennas is small. The situation of each antenna
that has a large phase error can be converted into the situation with no existent error. With a larger
number of phase errors, the performance of the proposed method is better. When there are five phase
errors on the antenna system, the proposed method achieves the best performance. The Figure also
indicates that existing methods, including SOMP, OGSBI, and FISTA, cannot estimate correctly with an
increasing number of phase errors. Therefore, the proposed method is very efficient in the case of large
numbers of phase number.

For different sample numbers, Figure 4 shows that further optimization of the sample number
can achieve a better resolution. Besides, the Figure shows the proposed method has a much better
performance when the sample number changes.
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Figure 2. DOA estimation performance with different numbers of antennas.
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Figure 3. DOA estimation performance with different numbers of phase errors.

Table 1. Simulation Parameters.

Parameter Value

The signal-to-noise ratio (SNR) of the received signal 20 dB
The number of samples M 100
The number of antennas N 20

The number of signals K 2
The space between antennas dT = dR 0.5 wavelength

The grid size δ 0.02◦

The detection DOA range [−30◦, 30◦]
The minimum DOA space between signals 10◦
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Figure 4. DOA estimation performance with different numbers of samples.

Additionally, for different SNRs, we can see the DOA estimation performance in Figure 5, where
the SNR is from -5 dB to 25 dB. When the SNR is smaller than 15 dB, with the increase of SNR, the DOA
estimation performance can be improved. When the SNR is larger than 15 dB, the DOA estimation
performance changes slowly with different SNRs. Since the sparse signals and the phase errors are
estimated iteratively using the proposed methods, it achieves better performance than the existing
methods, including SOMP, FISTA, and OGSBI.

We show the DOA estimation performance with different numbers of target signals in Figure 6.
As shown in this Figure, a better DOA estimation can be achieved by decreasing the number of target
signals using the proposed method. However, when the number is getting larger, the estimation error
of the proposed method improves faster compared with the traditional SOMP method. When the
number is 6, it achieves the same estimation performance as SOMP, which does not consider the phase
errors existing in antennas. Figure 6 indicates that the proposed method has an advantage in that
the number of target signals is small, and achieves the best performance among existing methods,
including SOMP, FISTA, and OGSBI.
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Figure 5. DOA estimation performance with different SNRs.
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Figure 6. DOA estimation performance with different numbers of targets.

Finally, the computation time of the proposed method is compared with the present three methods
in Table 2. We have not further worked in decreasing the computational time for all the methods.
The computational complexities of SOMP in Step 4 and Step 7 are O (NKM) and O (N2K + K3 +

K2N + NKM). Without the additional simplifications, the computational complexities of the proposed
method in Step 5 and Step 6 are O (N2K + NKM + MN) and O (N2M + N2). With the conditions
K � N and K � M, the computational complexities of the proposed method can be simplified as
O (N2M) per iteration. As shown in Table 2, the method SOMP has the least computation time.
However, the proposed method has better performance of DOA estimation. The proposed method
is comparable with the FISTA method, but the DOA estimation performance is better in the scenario
with phase errors among antennas. The computation time of the OGSBI method is much longer than
our proposed method. Thus, the DOA estimation performance in the ULA system with phase errors
can be significantly improved in the cost of an acceptable computational complexity.

Table 2. Simulation Time.

Method FISTA SOMP OGSBI Proposed Method

Time(s) 0.1470 0.0910 12.3063 0.1548

5. Conclusions

In this paper, we have investigated the DOA estimation problem of the ULA system in the scenario
with unknown phase errors among antennas. The system model considering the additional phase
errors was formulated by using a diagonal matrix. The DOA estimation problem can be converted into
a sparse reconstruction problem to exploit the signal sparsity in the spatial domain based on the CS
theory. Then, a novel method was proposed to estimate DOA, which updates the sparse signals and
phase errors iteratively. Simulation results confirm that the performance of DOA estimation using the
proposed method outperforms the state-of-the-art methods. Future work will focus on the extension
of the proposed method in a scenario with moving platforms.
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