The Energy Efficiency Multi-Robot System and Disinfection Service Robot Development in Large-Scale Complex Environment
Abstract
:1. Introduction
- The novel EnergyWise MRS and service robot system based on the ROS and TUW frameworks have been introduced. It accelerates development speed and ensures software scalability.
- By utilizing the 2-level multi-sensor fusion EKF algorithm and global UWB technology integrated into both the MRS and robots, localization precision is enhanced to 3 cm.
- The innovative energy-saving selector algorithm improves VSLAM calculation regulation, resulting in a 50% reduction in energy consumption. This mechanism offers a power-efficient solution for MRS research.
2. Related Works
2.1. The ROS-Based Multi-Robot System
2.2. Multi-Sensor Fusion Localization Technology in MRS
2.3. Power Efficiency with Service Robot and MRS Requirement
3. The Control Theory of EnergyWise Multi-Robot System
3.1. EnergyWise Multi-Robot System (MRS) System Architecture
3.1.1. Control Architecture
3.1.2. The ROS Based Disinfection Service Robot
3.2. The Global Energy-Saving Selector
ΔG(k) > σi_U → EKF2_in(k) = B(k)
ΔG(k) < σi_L → EKF2_in(k) = C(k)
ΔL(k) > σm_U → EKF2_in(k) = B(k)
ΔL(k) < σm_L → EKF2_in(k) = C(k)
3.3. 2-Level Multi-Sensor Fusion EKF
4. MRS Experimental Result in Large Scale Complex Field
4.1. The Experimental Field and Testing Scenario
4.2. The 2-Level EKF Experiment Result
4.2.1. The Sensors Performed in the Experiment Field
4.2.2. The 2-Level EKF Experiment Result
4.3. The Energy Saving Performance Evaluation
4.3.1. The Result of the Interaction between the Energy-Saving Selector and 2-Level EKF
4.3.2. The Result of Energy-Saving Selector
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez-Aguirre, J.A.; Osorio-Oliveros, R.; RodrAguez-Hernández, K.L.; Lizárraga-Iturralde, J.; Menendez, R.M.; RamÃrez-Mendoza, R.A. Service robots: Trends and technology. Appl. Sci. 2021, 11, 10702. [Google Scholar] [CrossRef]
- Verma, J.K.; Ranga, V. Multi-robot coordination analysis, taxonomy, challenges and future scope. J. Intell. Robot. Syst. 2021, 102, 10. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Jouandeau, N.; Cherif, A.A. A survey and analysis of multi-robot coordination. Int. J. Adv. Robot. Syst. 2013, 10, 399. [Google Scholar] [CrossRef]
- An, Z.; Hao, L.; Liu, Y.; Dai, L. Development of mobile robot SLAM based on ROS. Int. J. Mech. Eng. Robot. Res. 2016, 5, 47–51. [Google Scholar] [CrossRef]
- Garzón, M.; Valente, J.; Roldán, J.J.; Garzón-Ramos, D.; de León, J.; Barrientos, A.; del Cerro, J. Using ros in multi-robot systems: Experiences and lessons learned from real-world field tests. Robot. Oper. Syst. 2017, 707, 449–483. [Google Scholar]
- Chitic, S.G. Middleware and Programming Models for Multi-Robot System. Ph.D. Thesis, Université de Lyon, Lyon, France, 2018. [Google Scholar]
- da Costa Barros, I.R.; Nascimento, T.P. Robotic mobile fulfillment systems: A survey on recent developments and research opportunities. Robot. Auton. Syst. 2021, 137, 103729. [Google Scholar] [CrossRef]
- Khaleghi, B.; Khamis, A.; Karray, F.O.; Razavi, S.N. Multisensor data fusion: A review of the state-of-the-art. Inf. Fusion 2013, 14, 28–44. [Google Scholar] [CrossRef]
- Martinelli, A.; Pont, F.; Siegwart, R. Multi-robot localization using relative observations. In Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005. [Google Scholar]
- Chen, C.S.; Lin, C.J.; Lai, C.C. Non-contact service robot development in fast-food restaurants. IEEE Access 2022, 10, 31466–31479. [Google Scholar] [CrossRef]
- Rai, A.; Chaturvedi, C.; Maduri, P.K.; Singh, K. Autonomous disinfection robot. In Proceedings of the International Conference on Advances in Computing, Communication Control and Networking, Greater Noida, India, 18–19 December 2020. [Google Scholar]
- Mu, L.; Yao, P.; Zheng, Y.; Chen, K.; Wang, F.; Qi, N. Research on SLAM algorithm of mobile robot based on the fusion of 2D LiDAR and depth camera. IEEE Access 2020, 8, 157628–157642. [Google Scholar] [CrossRef]
- Ye, C.; Borenstein, J. Characterization of a 2D laser scanner for mobile robot obstacle negotiation. In Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, USA, 11–15 May 2002. [Google Scholar]
- Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Filipenko, M.; Afanasyev, I. Comparison of various SLAM systems for mobile robot in an indoor environment. In Proceedings of the International Conference on Intelligent Systems (IS), Funchal, Portugal, 25–27 September 2018; pp. 400–407. [Google Scholar]
- Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with Rao–Blackwellized particle filters. IEEE Trans. Robot 2007, 23, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Mur-Artal, R.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef] [Green Version]
- Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef] [Green Version]
- Bailey, T.; Nieto, J.; Guivant, J.; Stevens, M.; Nebot, E. Consistency of the EKF-SLAM algorithm. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 3562–3568. [Google Scholar]
- Krishnan, S.; Sharma, P.; Zhang, G.; Ong, H.W. A UWB based localization system for indoor robot navigation. In Proceedings of the IEEE International Conference on Ultra-Wideband, Singapore, 24–26 September 2007. [Google Scholar]
- Binder, B. Tuw Multi Robot-ROS Wiki. 2017. Available online: http://wiki.ros.org/tuw_multi_robot (accessed on 9 November 2021).
- Arai, T.; Pagello, E.; Parker, L.E. Editorial: Advances in multi-robot systems. IEEE Trans. Robot. Autom 2002, 18, 655–661. [Google Scholar] [CrossRef] [Green Version]
- Farinelli, A.; Iocchi, L.; Nardi, D. Multirobot systems: A classification focused on coordination. IEEE Trans. Syst. Man Cybern. Part B 2004, 34, 2015–2028. [Google Scholar] [CrossRef] [Green Version]
- McLurkin, J.; Smith, J. Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. Distrib. Auton. Robot. Syst. 2007, 6, 399–408. [Google Scholar]
- Binder, B.; Beck, F.; König, F.; Bader, M. Multi robot route planning (MRRP): Extended spatial-temporal prioritized planning. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), The Venetian Macao, Macau, 3–8 November 2019; pp. 4133–4139. [Google Scholar]
- Gerkey, B.P.; Vaughan, R.T.; Howard, A. The player/stage project: Tools for multi-robot and distributed sensor systems. In Proceedings of the International Conference on Advanced Robotics (ICAR), Coimbra, Portugal, 30 June–3 July 2003; pp. 317–323. [Google Scholar]
- Koenig, N.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 28 September–2 October 2004. [Google Scholar]
- Sahni, Y.; Cao, J.; Jiang, S. Middleware for multi-robot system. In Mission-Oriented Sensor Networks and Systems: Art and Science; Springer: Berlin/Heidelberg, Germany, 2019; pp. 633–673. [Google Scholar]
- Portugal, D.; Iocchi, L.; Farinelli, A. A ROS-based framework for simulation and benchmarking of multi-robot patrolling algorithm. Robot. Oper. Syst. 2017, 778, 3–28. [Google Scholar]
- Juan, S.H.; Cotarelo, F.H. ROS Systems Multi Master; Institut de Robòtica i Informàtica Industrial (IRI): Barcelona, Spain, 2015. [Google Scholar]
- Spellini, S.; Lora, M.; Fummi, F.; Chattopadhyay, S. Compositional design of multi-robot systems control. ACM Trans. Embed. Comput. Syst. 2019, 18, 1–24. [Google Scholar] [CrossRef]
- Cañas, J.M.; Perdices, E.; García-Pérez, L.; Fernández-Conde, J. A ROS-Based Open Tool for Intelligent Robotics Education. Appl. Sci. 2020, 10, 7419. [Google Scholar] [CrossRef]
- Yang, S.W.; Wang, C.C. Dealing with laser scanner failure: Mirrors and windows. In Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008. [Google Scholar]
- Alatise, M.B.; Hancke, G.P. Pose estimation of a mobile robot based on fusion of IMU data and vision data using an extended kalman filter. Sensors 2017, 17, 2164. [Google Scholar] [CrossRef] [Green Version]
- Kalman, R.E. A new approach to linear filtering and prediction problems. Trans. ASME–J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 92, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Stroupe, A.W.; Martin, M.C.; Balch, T. Distributed sensor fusion for object position estimation by multi-robot systems. In Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Republic of Korea, 21–26 May 2001. [Google Scholar]
- Hollinger, G.A.; Yerramalli, S.; Singh, S.; Mitra, U.; Sukhatme, G.S. Distributed data fusion for multi-robot search. IEEE Trans. Robot. 2015, 31, 55–66. [Google Scholar] [CrossRef]
- Allawi, Z.; Abdalla, T. A PSO-optimized reciprocal velocity obstacles algorithm for navigation of multiple mobile robots. IAES Int. J. Robot. Autom. 2015, 4, 31. [Google Scholar] [CrossRef]
- Zwirello, L.; Schipper, T.; Harter, M.; Zwick, T. UWB localization system for indoor applications: Concept, realization and analysis. J. Electr. Comput. Eng. 2012, 2012, 849638. [Google Scholar] [CrossRef] [Green Version]
- Kulmer, J.; Hinteregger, S.; Großwindhager, B.; Rath, M.; Bakr, M.S.; Leitinger, E.; Witrisal, K. Using DecaWave UWB transceivers for high-accuracy multipath-assisted indoor localization. In Proceedings of the IEEE International Conference on Communications Workshops, Paris, France, 21–25 May 2017. [Google Scholar]
- McElroy, C.; Neirynck, D.; McLaughlin, M. Comparison of wireless clock synchronization algorithms for indoor location systems. In Proceedings of the IEEE International Conference on Communications Workshops, Sydney, Australia, 10–14 June 2014. [Google Scholar]
- Gentner, C.; Ulmschneider, M.; Jost, T. Simultaneous localization and mapping for pedestrians using low-cost ultra-wideband system and gyroscope. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, USA, 23–26 April 2018. [Google Scholar]
- Carabin, G.; Wehrle, E.; Vidoni, R. A review on energy-saving optimization methods for robotic and automatic systems. Robotics 2017, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Chiang, A.H.; Trimi, S. Impacts of service robots on service quality. Serv. Bus. 2020, 14, 439–459. [Google Scholar] [CrossRef]
- Yanik, Ö.F.; Ilgin, H.A. A comprehensive computational cost analysis for state-of-the-art visual slam methods for autonomous mapping. Communications 2023, 65, 1–15. [Google Scholar]
- Tertei, D.T.; Piat, J.; Devy, M. FPGA design of EKF block accelerator for 3D visual SLAM. Comput. Electr. Eng. 2016, 55, 123–137. [Google Scholar] [CrossRef] [Green Version]
- Peng, T.; Zhang, D.; Liu, R.; Asari, V.K.; Loomis, J.S. Evaluating the power efficiency of visual SLAM on embedded GPU Systems. In Proceedings of the IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 15–19 July 2019. [Google Scholar]
- Peng, T.; Zhang, D.; Hettiarachchi, D.L.N.; Loomis, J.S. An evaluation of embedded GPU systems for visual SLAM algorithms. Electron. Imaging 2020, 6, 325-1–325-6. [Google Scholar] [CrossRef]
- Yanik, Ö.F.; Ilgin, H.A. Comparison of power consumption of modern SLAM methods on various datasets. In Proceedings of the International Conference on Technological Advancements and Innovations, Tashkent, Uzbekistan, 10–12 November 2021. [Google Scholar]
EKF Level | State Measurement | Configuration | ||||
---|---|---|---|---|---|---|
Level 2 EKF | LiDAR-AMCL (PoseA) | 1 | 1 | 1 | 0 | 0 |
ORB-SLAM2 (Pose B) | 0 | 0 | 0 | 1 | 1 | |
Level 1 EKF (Pose C) | 0 | 0 | 0 | 1 | 1 | |
Level 1 EKF | Odometer | 0 | 0 | 0 | 1 | 0 |
IMU | 0 | 0 | 0 | 0 | 1 | |
UWB | 1 | 1 | 0 | 0 | 0 |
Robot No. | Robot Operation Time (s) | VSLAM Operation Time (s) | VSLAM Energy Consumption (J) | Energy-Saving Ratio |
---|---|---|---|---|
Robot(1) | 127.2 | 127.2 | 3180 | 0% |
Robot(2) | 128.9 | 34.79 | 869.75 | 73% |
Robot(3) | 130 | 36.07 | 901.5 | 72.2% |
MRS(Total) | 386.1 | 198.05 | 4951.25 | 48.4% |
Robot NO. | Robot Operation Time (h) | VSLAM Operation Time (h) | VSLAM Energy Consumption (kJ) | Energy-Saving Ratio |
---|---|---|---|---|
Robot(1) | 74.2 | 74.2 | 6678 | 0% |
Robot(2) | 70.6 | 13.6 | 1226 | 81% |
Robot(3) | 67.9 | 12.5 | 1124 | 82% |
MRS(Total) | 212.7 | 100.3 | 9028 | 54% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-S.; Lin, F.-C.; Lin, C.-J. The Energy Efficiency Multi-Robot System and Disinfection Service Robot Development in Large-Scale Complex Environment. Sensors 2023, 23, 5724. https://doi.org/10.3390/s23125724
Chen C-S, Lin F-C, Lin C-J. The Energy Efficiency Multi-Robot System and Disinfection Service Robot Development in Large-Scale Complex Environment. Sensors. 2023; 23(12):5724. https://doi.org/10.3390/s23125724
Chicago/Turabian StyleChen, Chin-Sheng, Feng-Chieh Lin, and Chia-Jen Lin. 2023. "The Energy Efficiency Multi-Robot System and Disinfection Service Robot Development in Large-Scale Complex Environment" Sensors 23, no. 12: 5724. https://doi.org/10.3390/s23125724
APA StyleChen, C.-S., Lin, F.-C., & Lin, C.-J. (2023). The Energy Efficiency Multi-Robot System and Disinfection Service Robot Development in Large-Scale Complex Environment. Sensors, 23(12), 5724. https://doi.org/10.3390/s23125724