Center of Mass Estimation Using a Force Platform and Inertial Sensors for Balance Evaluation in Quiet Standing
Abstract
:1. Introduction
2. Estimation Methods
2.1. Modeling
2.2. COM Estimation Method
3. Verification Methods
3.1. Experimental Protocol
3.2. Experimental Equipment
3.3. Post-Processing
4. Results
5. Discussion
6. Conclusions
7. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mansfield, A.; Danells, C.J.; Inness, E.; Mochizuki, G.; McIlroy, W.E. Between-limb synchronization for control of standing balance in individuals with stroke. Clin. Biomech. 2011, 26, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Baratto, L.; Morasso, P.G.; Re, C.; Spada, G. A new look at posturographic analysis in the clinical context: Sway-density versus other parameterization techniques. Mot. Control 2002, 6, 246–270. [Google Scholar] [CrossRef] [PubMed]
- Kantner, R.M.; Rubin, A.M.; Armstrong, C.W.; Cummings, V. Stabilometry in balance assessment of dizzy and normal subjects. Am. J. Otolaryngol.-Head Neck Med. Surg. 1991, 12, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, O.; Kelm, J.; Hammes, A.; Schmitt, E.; Fröhlich, M. Neuromuscular performance of balance and posture control in childhood and adolescence. Heliyon 2020, 6, e04541. [Google Scholar] [CrossRef] [PubMed]
- Fino, P.C.; Mojdehi, A.R.; Adjerid, K.; Habibi, M.; Lockhart, T.E.; Ross, S.D. Comparing Postural Stability Entropy Analyses to Differentiate Fallers and Non-fallers. Ann. Biomed. Eng. 2016, 44, 1636–1645. [Google Scholar] [CrossRef]
- Zhou, J.; Habtemariam, D.; Iloputaife, I.; Lipsitz, L.A.; Manor, B. The Complexity of Standing Postural Sway Associates with Future Falls in Community-Dwelling Older Adults: The MOBILIZE Boston Study. Sci. Rep. 2017, 7, 2924. [Google Scholar] [CrossRef]
- Crétual, A. Which biomechanical models are currently used in standing posture analysis? Neurophysiol. Clin./Clin. Neurophysiol. 2015, 45, 285–295. [Google Scholar] [CrossRef]
- Błaszczyk, J.W. The use of force-plate posturography in the assessment of postural instability. Gait Posture 2016, 44, 1–6. [Google Scholar] [CrossRef]
- Chen, B.; Liu, P.; Xiao, F.; Liu, Z.; Wang, Y. Review of the upright balance assessment based on the force plate. International J. Environ. Res. Public Health 2021, 18, 2696. [Google Scholar] [CrossRef]
- Vette, A.H.; Sayenko, D.G.; Jones, M.; Abe, M.O.; Nakazawa, K.; Masani, K. Ankle muscle co-contractions during quiet standing are associated with decreased postural steadiness in the elderly. Gait Posture 2017, 55, 31–36. [Google Scholar] [CrossRef]
- Richmond, S.B.; Fling, B.W.; Lee, H.; Peterson, D.S. The assessment of center of mass and center of pressure during quiet stance: Current applications and future directions. J. Biomech. 2021, 123, 110485. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Yu, E.; Abe, M.; Masani, K.; Kawashima, N.; Eto, F.; Haga, N.; Nakazawa, K. Evaluation of Postural Control in Quiet Standing Using Center of Mass Acceleration: Comparison Among the Young, the Elderly, and People With Stroke. Arch. Phys. Med. Rehabil. 2008, 89, 1133–1139. [Google Scholar] [CrossRef]
- Oba, N.; Sasagawa, S.; Yamamoto, A.; Nakazawa, K. Difference in postural control during quiet standing between young children and adults: Assessment with center of mass acceleration. PLoS ONE 2015, 10, e0140235. [Google Scholar] [CrossRef] [PubMed]
- Ghai, S.; Nardone, A.; Schieppati, M. Human balance in response to continuous, predictable translations of the support base: Integration of sensory information, adaptation to perturbations, and the effect of age, neuropathy and Parkinson’s disease. Appl. Sci. 2019, 9, 5310. [Google Scholar] [CrossRef]
- Winberg, T.B.; Martel, D.R.; Hoshizaki, T.B.; Laing, A.C. Evaluation of amplitude- and frequency-based techniques for attenuating inertia-based movement artifact during surface translation perturbations. Gait Posture 2021, 86, 299–302. [Google Scholar] [CrossRef]
- van der Kooij, H.; van Asseldonk, E.; van der Helm, F.C.T. Comparison of different methods to identify and quantify balance control. J. Neurosci. Methods 2005, 145, 175–203. [Google Scholar] [CrossRef]
- Akçay, M.E.; Lippi, V.; Mergner, T. Visual Modulation of Human Responses to Support Surface Translation. Front. Hum. Neurosci. 2021, 15, 615200. [Google Scholar] [CrossRef]
- Nicolai, A.; Audiffren, J. Estimating Center of Mass Trajectory in Quiet Standing: A Review. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Berlin, Germany, 23–27 July 2019; pp. 6854–6859. [Google Scholar]
- Zatsiorsky, V.M.; King, D.L. An algorithm for determining gravity line location from posturographic recordings. J. Biomech. 1997, 31, 161–164. [Google Scholar] [CrossRef]
- Caron, O.; Faure, B.; Brenière, Y. Estimating the centre of gravity of the body on the basis of the centre of pressure in standing posture. J. Biomech. 1997, 30, 1169–1171. [Google Scholar] [CrossRef]
- Gruben, K.G.; Boehm, W.L. Mechanical interaction of center of pressure and force direction in the upright human. J. Biomech. 2012, 45, 1661–1665. [Google Scholar] [CrossRef] [PubMed]
- Sopa, M.; Sypniewska-Kamińska, G.; Walczak, T.; Kamiński, H. Two-Dimensional Mechanical Model of Human Stability in External Force-Caused Fall. Appl. Sci. 2023, 13, 5068. [Google Scholar] [CrossRef]
- Gage, W.H.; Winter, D.A.; Frank, J.S.; Adkin, A.L. Kinematic and kinetic validity of the inverted pendulum model in quiet standing. Gait Posture 2004, 19, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Fok, K.L.; Lee, J.; Vette, A.H.; Masani, K. Kinematic error magnitude in the single-mass inverted pendulum model of human standing posture. Gait Posture 2018, 63, 23–26. [Google Scholar] [CrossRef] [PubMed]
- King, D.L.; Zatsiorsky, V.M. Extracting gravity line displacement from stabilographic recordings. Gait Posture 1997, 6, 27–38. [Google Scholar] [CrossRef]
- Ae, M.; Tang, H.; Yokoi, T. Estimation of inertia properties of the body segments in Japanese athletes. Biomechanisum 1992, 11, 23–33. [Google Scholar] [CrossRef]
- Contini, R. Body segment parameters, Part II. Artif. Limbs 1972, 16, 1–19. [Google Scholar]
- Horak, F.B.; Nashner, L.M. Central programming of postural movements: Adaptation to altered support-surface configurations. J. Neurophysiol. 1986, 55, 1369–1381. [Google Scholar] [CrossRef]
- Sotirakis, H.; Patikas, D.A.; Papaxanthis, C.; Hatzitaki, V. Resilience of visually guided weight shifting to a proprioceptive perturbation depends on the complexity of the guidance stimulus. Gait Posture 2022, 95, 22–29. [Google Scholar] [CrossRef]
- Cofré Lizama, L.E.; Pijnappels, M.; Reeves, N.P.; Verschueren, S.M.; van Dieën, J.H. Centre of pressure or centre of mass feedback in mediolateral balance assessment. J. Biomech. 2015, 48, 539–543. [Google Scholar] [CrossRef]
- Kilby, M.C.; Slobounov, S.M.; Newell, K.M. Augmented feedback of COM and COP modulates the regulation of quiet human standing relative to the stability boundary. Gait Posture 2016, 47, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Hirono, T.; Ikezoe, T.; Yamagata, M.; Kato, T.; Kimura, M.; Ichihashi, N. Relationship between postural sway on an unstable platform and ankle plantar flexor force steadiness in community-dwelling older women. Gait Posture 2021, 84, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Komiya, M.; Maeda, N.; Narahara, T.; Suzuki, Y.; Fukui, K.; Tsutsumi, S.; Yoshimi, M.; Ishibashi, N.; Shirakawa, T.; Urabe, Y. Effect of 6-Week Balance Exercise by Real-Time Postural Feedback System on Walking Ability for Patients with Chronic Stroke: A Pilot Single-Blind Randomized Controlled Trial. Brain Sci. 2021, 11, 1493. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, D.; Cappello, A.; Chiari, L. Influence of body segment parameters and modeling assumptions on the estimate of center of mass trajectory. J. Biomech. 2003, 36, 1335–1341. [Google Scholar] [CrossRef]
- Hof, A.L. Comparison of three methods to estimate the center of mass during balance assessment. J. Biomech. 2005, 38, 2134–2135. [Google Scholar] [CrossRef]
- Hof, A.L.; Gazendam, M.G.J.; Sinke, W.E. The condition for dynamic stability. J. Biomech. 2005, 38, 1–8. [Google Scholar] [CrossRef]
Sagittal Plane | Frontal Plane | ||||
---|---|---|---|---|---|
Segment | Symbol | Value | Segment | Symbol | Value |
Body | mb | 0.978 M | Legs | ml | 0.161 M |
Jb | 0.0425 MH2 | Jl | 0.00524 MH2 | ||
lb | 0.531 H | ll | 0.285 H | ||
Lower body | m1 | 0.322 M | Ll | 0.460 H | |
J1 | 0.00223 MH2 | Pelvis | mp | 0.187 M | |
l1 | 0.285 H | lp | 0.056 H | ||
L1 | 0.460 H | Lp | 0.144 H | ||
Upper body | m2 | 0.656 M | Upper body | mu | 0.469 M |
J2 | 0.0114 MH2 | Ju | 0.00714 MH2 | ||
l2 | 0.191 H | lu | 0.109 H | ||
L2 | 0.434 H | Lu | 0.290 H | ||
Foot | Lf | 0.038 H | Foot | Lf | 0.038 H |
Motion | Method | COM Position | COM Velocity | Lower Body Acceleration | Upper Body Acceleration |
---|---|---|---|---|---|
mm | mm/s | mm/s2 | mm/s2 | ||
(A) Quiet Standing | RMS | 3.25 ± 1.09 | 2.36 ± 0.59 | 10.2 ± 4.2 | 11.0 ± 4.1 |
(I) | 0.65 ± 0.21 | 1.83 ± 0.56 | - | - | |
(II) | 0.59 ± 0.18 | 1.75 ± 0.55 | 9.6 ± 4.0 | 8.3 ± 4.1 | |
(III) | 0.31 ± 0.12 | 0.72 ± 0.44 | - | - | |
(IV) | 1.03 ± 0.67 | 3.71 ± 1.18 | - | - | |
(B) Ankle Motion (AP) | RMS | 26.89 ± 7.70 | 33.70 ± 9.81 | 48.2 ± 13.0 | 85.6 ± 24.2 |
(I) | 2.89 ± 1.45 | 9.73 ± 3.86 | - | - | |
(II) | 2.62 ± 1.17 | 8.86 ± 3.77 | 33.7 ± 8.3 | 27.9 ± 8.9 | |
(III) | 1.50 ± 0.43 | 2.29 ± 0.52 | - | - | |
(IV) | 9.32 ± 6.96 | 10.81 ± 3.04 | - | - | |
(D) Hip Motion (AP) | RMS | 9.03 ± 2.64 | 35.65 ± 14.50 | 421.5 ± 202.9 | 119.3 ± 66.5 |
(I) | 15.10 ± 6.86 | 32.59 ± 15.28 | - | - | |
(II) | 3.47 ± 1.67 | 12.16 ±5.36 | 100.0 ± 37.4 | 103.9 ± 57.7 | |
(III) | 4.44 ± 2.06 | 24.01 ± 11.28 | - | - | |
(IV) | 5.17 ± 3.34 | 10.22 ± 6.27 | - | - | |
(E) Horizontal Sway (AP) | RMS | 10.89 ± 2.44 | 16.36 ± 1.76 | 50.3 ± 11.6 | 99.2 ± 11.3 |
(I) | 1.99 ± 0.44 | 7.44 ± 0.81 | - | - | |
(II) | 1.60 ± 0.34 | 6.90 ± 0.79 | 30.6 ± 8.4 | 32.2 ± 8.8 | |
(III) | 1.21 ± 0.24 | 2.33 ± 0.50 | - | - | |
(IV) | 12.15 ± 7.24 | 15.09 ± 3.92 | - | - |
Motion | Method | COM Position | COM Velocity | Lower Body Acceleration | Upper Body Acceleration |
---|---|---|---|---|---|
mm | mm/s | mm/s2 | mm/s2 | ||
(A) Quiet Standing | RMS | 1.51 ± 0.62 | 1.55 ± 0.53 | 9.4 ± 4.9 | 10.4 ± 6.1 |
(I) | 0.56 ± 0.15 | 1.76 ± 0.46 | - | - | |
(II) | 0.56 ± 0.15 | 1.75 ± 0.45 | 8.7 ±4.9 | 9.3 ± 6.3 | |
(III) | 0.17 ± 0.07 | 0.66 ± 0.44 | - | - | |
(IV) | 2.48 ± 2.78 | 5.23 ± 2.20 | - | - | |
(C) Ankle Motion (ML) | RMS | 34.47 ± 8.77 | 42.86 ± 10.47 | 53.1 ±11.9 | 93.7 ± 21.4 |
(I) | 3.60 ± 2.50 | 20.93 ± 5.38 | - | - | |
(II) | 3.33 ± 1.96 | 19.67 ± 5.11 | 34.6 ±8.1 | 32.2 ± 8.4 | |
(III) | 1.41 ± 0.80 | 2.16 ± 1.05 | - | - | |
(IV) | 25.95 ± 22.62 | 33.36 ± 9.14 | - | - | |
(F) Horizontal Sway (ML) | RMS | 10.08 ± 1.98 | 19.10 ± 1.95 | 61.0 ±8.0 | 100.0 ± 11.9 |
(I) | 2.32 ± 0.41 | 7.95 ± 1.16 | - | - | |
(II) | 1.79 ± 0.36 | 7.38 ± 1.28 | 23.8 ±3.4 | 29.9 ± 5.8 | |
(III) | 1.10 ± 0.24 | 1.91 ± 0.28 | - | - | |
(IV) | 12.36 ± 7.71 | 16.39 ± 3.78 | - | - |
Motion | Method | COM Position | COM Velocity | Lower Body Acceleration | Upper Body Acceleration |
---|---|---|---|---|---|
(A) Quiet Standing | (I) | 0.978 ± 0.023 | 0.778 ± 0.122 | - | - |
(II) | 0.981 ± 0.020 | 0.781 ± 0.126 | 0.377 ± 0.136 | 0.446 ± 0.189 | |
(III) | 0.997 ± 0.006 | 0.951 ± 0.073 | - | - | |
(IV) | 0.954 ± 0.031 | 0.655 ± 0.152 | - | - | |
(B) Ankle Motion (AP) | (I) | 0.998 ± 0.002 | 0.980 ± 0.024 | - | - |
(II) | 0.998 ± 0.001 | 0.980 ± 0.025 | 0.689 ± 0.126 | 0.953 ± 0.031 | |
(III) | 0.999 ± 0.001 | 0.999 ± 0.001 | - | - | |
(IV) | 0.943 ± 0.060 | 0.970 ± 0.026 | - | - | |
(D) Hip Motion (AP) | (I) | 0.102 ± 0.363 | 0.767 ± 0.071 | - | - |
(II) | 0.938 ± 0.046 | 0.949 ± 0.043 | 0.958 ± 0.074 | 0.377 ± 0.429 | |
(III) | 0.894 ± 0.063 | 0.893 ± 0.129 | - | - | |
(IV) | 0.844 ± 0.183 | 0.942 ± 0.082 | - | - | |
(E) Horizontal Sway (AP) | (I) | 0.984 ± 0.008 | 0.934 ± 0.013 | - | - |
(II) | 0.989 ± 0.006 | 0.945 ± 0.011 | 0.813 ± 0.056 | 0.935 ± 0.028 | |
(III) | 0.995 ± 0.002 | 0.992 ± 0.003 | - | - | |
(IV) | 0.711 ± 0.196 | 0.840 ± 0.082 | - | - |
Motion | Method | COM Position | COM Velocity | Lower Body Acceleration | Upper Body Acceleration |
---|---|---|---|---|---|
(A) Quiet Standing | (I) | 0.922 ± 0.062 | 0.636 ± 0.131 | - | - |
(II) | 0.920 ± 0.068 | 0.623 ± 0.135 | 0.252 ± 0.125 | 0.339 ± 0.151 | |
(III) | 0.991 ± 0.010 | 0.889 ± 0.100 | - | - | |
(IV) | 0.713 ± 0.267 | 0.452 ± 0.159 | - | - | |
(C) Ankle Motion (ML) | (I) | 0.998 ± 0.001 | 0.974 ± 0.017 | - | - |
(II) | 0.998 ± 0.001 | 0.971 ± 0.019 | 0.872 ± 0.075 | 0.962 ± 0.034 | |
(III) | 1.000 ± 0.000 | 0.999 ± 0.001 | - | - | |
(IV) | 0.919 ± 0.120 | 0.975 ± 0.022 | - | - | |
(E) Horizontal Sway (ML) | (I) | 0.974 ± 0.011 | 0.946 ± 0.019 | - | - |
(II) | 0.985 ± 0.006 | 0.951 ± 0.022 | 0.924 ± 0.023 | 0.957 ± 0.022 | |
(III) | 0.995 ± 0.002 | 0.996 ± 0.002 | - | - | |
(IV) | 0.710 ± 0.195 | 0.873 ± 0.073 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonobe, M.; Inoue, Y. Center of Mass Estimation Using a Force Platform and Inertial Sensors for Balance Evaluation in Quiet Standing. Sensors 2023, 23, 4933. https://doi.org/10.3390/s23104933
Sonobe M, Inoue Y. Center of Mass Estimation Using a Force Platform and Inertial Sensors for Balance Evaluation in Quiet Standing. Sensors. 2023; 23(10):4933. https://doi.org/10.3390/s23104933
Chicago/Turabian StyleSonobe, Motomichi, and Yoshio Inoue. 2023. "Center of Mass Estimation Using a Force Platform and Inertial Sensors for Balance Evaluation in Quiet Standing" Sensors 23, no. 10: 4933. https://doi.org/10.3390/s23104933
APA StyleSonobe, M., & Inoue, Y. (2023). Center of Mass Estimation Using a Force Platform and Inertial Sensors for Balance Evaluation in Quiet Standing. Sensors, 23(10), 4933. https://doi.org/10.3390/s23104933