Research on a Precision Calibration Model of a Flexible Strain Sensor Based on a Variable Section Cantilever Beam
Abstract
:1. Introduction
2. Measurement Model
2.1. The Relationship between Deflection and Strain of a Variable Section Cantilever Beam
2.2. Conventional Small Deflection Strain Analysis Model
2.3. Flexible Large Deflection Strain Analysis Model
3. Simulated Analysis
3.1. Characteristic Parameters of a Variable Section Cantilever Beam
3.2. Deflection Simulation Analysis
3.3. Strain Simulation Analysis
4. Measurement Experiment
4.1. Equipment Design
4.2. Experimental Design
4.2.1. Experimental Scheme
4.2.2. Experimental Measurement Data
4.2.3. Uncertainty Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, H.; Li, S.; Barreiros, J.; Tu, Y.; Pollock, C.R.; Shepherd, R.F. Stretchable Distribu ted Fiber—Optic Sensors. Science 2020, 370, 848–852. Available online: https://www.science.org/doi/abs/10.1126/science.aba5504 (accessed on 22 March 2023). [CrossRef]
- Lee, Y.; Kim, J.; Jang, B.; Kim, S.; Sharma, B.K.; Kim, J.H.; Ahn, J.H. Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 2019, 62, 259–267. [Google Scholar] [CrossRef]
- She, M.; Xu, R.; Wei, J.; Tian, M.; Qu, L.; Chen, S. Textile-based flexible tactile sensors and wearable applications. J. Silk 2023, 60, 60–72. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, P.; Zhao, H.; Ge, Z.; Jiang, C. Shape reconstruction based on the FBG flexible sensor. Chin. J. Sci. Instrum. 2021, 42, 83–91. [Google Scholar] [CrossRef]
- Chen, R. Liquid metal based flexible pressure sensor for tactile sensing of robots. J. Phys. Conf. Ser. 2021, 1885, 052025. [Google Scholar] [CrossRef]
- Guan, M.; Liu, Y.; Du, H.; Long, Y.; An, X.; Liu, H.; Cheng, B. Durable, breathable, sweat-resistant, and degradable flexible sensors for human motion detection. Chem. Eng. J. 2023, 462, 142151. [Google Scholar] [CrossRef]
- Anindya, N.; Mukhopadhyay, S.C.; Kosel, J. Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring. Sens. Actuators A Phys. 2016, 251, 148–155. [Google Scholar] [CrossRef]
- Sana, F.; Isselbacher, E.M.; Singh, J.P.; Kevin Heist, E.; Pathik, B.; Armoundas, A.A. Wearable devices for am-bulatory cardiac monitoring. J. Am. Coll. Cardiol. 2020, 75, 1582–1592. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, C.; Chen, X.; Yu, X.; Yang, J. Research progress for the biomimetic flexible sensor in the field of active health. J. Chongqing Med. Univ. 2022, 47, 883–888. [Google Scholar]
- Liu, H.; Liu, G.; Li, S.; Jia, H.; Fang, G.; Feng, R.; Su, Y. Research and application of sensors with great flexibility and deformability for aerospace recycling equipment (1)—Curvature sensor. Spacecr. Recovery Remote Sens. 2023, 44, 50–58. [Google Scholar] [CrossRef]
- GB/T 13992—2010 Metal Paste Resistance Strain. Available online: https://www.chinesestandard.net/PDF/English.aspx/GBT13992-2010 (accessed on 7 March 2023).
- Li, H.; Zhang, J.; Chen, J.; Luo, Z.; Zhang, J.; Alhandarish, Y.; Liu, Q.; Tang, W.; Wang, L. A Supersensitive, Multidimensional Flexible Strain Gauge Sensor Based on Ag/PDMS for Human Activities Monitoring. Sci. Rep. 2020, 10, 4639. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Liu, H.; Gao, R. Calibration technology of optical fiber strain sensor. J. Shanghai Jiaotong Univ. 2022, 1–9. [Google Scholar] [CrossRef]
- Chang, J.; Hyun, L. A Method Estimating Displacement using Measured Strain Response of Simply Supported Girder Bridges. J. Korea Inst. Struct. Maint. Insp. 2016, 20. [Google Scholar] [CrossRef]
- Bo, T.; Hu, J.; Zhu, M.; Cao, P.; Lin, J.; Shen, X. Development of Optical Fiber Strain Calibration Device. J. Phys. Conf. Ser. 2020, 1654, 012097. [Google Scholar] [CrossRef]
- Motwani, P.; Perogamvros, N.; Taylor, S.; Sonebi, M.; Laskar, A.; Murphy, A. Experimental investigation of strain sensitivity 447 for surface bonded fibre optic sensors. Sens. Actuators A Phys. 2020, 303, 111833. [Google Scholar] [CrossRef]
- Zheng, W.; Dan, D.; Cheng, W. Calibration of 0.1με-level resolution FBG sensor by the equal strength beam. J. Optoelectron. Laser 2017, 4. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, X.; Chen, Y.; Zhang, X. A method of strain measurement based on fiber Bragg grating sensors. Vibroeng. Procedia 2015, 5, 140–144. Available online: https://www.extrica.com/article/16204/pdf (accessed on 7 March 2023).
- Hou, J.; Liu, B.; Cui, J.; Wei, J.; Chen, K.; Zhang, P.; Li, X. Calibration and process simulation of FBG strain deflection method. Acta Metrol. Sin. 2021, 42, 1472–1481. [Google Scholar] [CrossRef]
- Zhao, Z.; Deng, Z.; Song, A. An approximation method for the large deflection of cantilever beams. Mech. Eng. 2014, 36, 341–344+366. [Google Scholar] [CrossRef]
- Polilov, A.N.; Tatus, N.A.; Tian, X. Analyzing the Correctness of Equal Strength Composite Profiled Beam Bending Problems. J. Appl. Mech. Tech. Phys. 2019, 60, 144–155. [Google Scholar] [CrossRef]
- Yan, Y.; Wu, Z.; Cui, J.; Chen, K.; Tang, Y.; Yang, N. Calibration model optimization for strain metrology of equal strength beams using deflection measurements. Sensors 2023, 23, 3059. [Google Scholar] [CrossRef] [PubMed]
- Liu, H. Mechanics of Materials; Higher Education Press: Beijing, China, 2017. [Google Scholar]
- Oore, S.; Oore, M. Uniform strength for large deflections of cantilever beams under end point load. Struct. Multidisc. Optim. 2009, 38, 499–510. [Google Scholar] [CrossRef]
- Liu, Y. Piezoelectric energy harvesting of a micro beam with equal strength. Chin. J. Sens. Actuators 2018, 31, 1012–1016. [Google Scholar] [CrossRef]
- Wen, Y.; Lin, J.; Pang, Z.; Ye, Y.; Kang, L. Anelastic behavior of Q&P steel. J. Plast. Eng. 2016, 23, 131–136. [Google Scholar]
- Zhu, S.; Zhang, Z.; Qiu, T.; Han, H.; Yin, A.; Lu, W. Optical Fiber Measurement of Surface Strain Distribution on Equal Strength Beam. Piezoelectr. Acoustoopt. 2019, 41, 809–813. [Google Scholar]
- Xue, Z.; Lv, G. Study on the surface bonding technology of fiber Bragg grating strain sensor. Nat. Sci. J. Harbin Norm. Univ. 2011, 27, 29–32. [Google Scholar] [CrossRef]
- Hu, D.; Guo, Y.; Chen, X.; Zhang, C. Cable Force Health Monitoring of Tongwamen Bridge Based on Fiber Bragg Grating. Appl. Sci. 2017, 7, 384. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Materials | Spring steels of 65 Mn |
Beam’s length, L | 375 mm |
Beam’s width of the fixed end, b | 43.2 mm |
Beam’s thickness, h | 5 mm |
Beam’s elasticity modulus, E | 194 GPa |
Beam’s density, ρ | 7.85 g/cm3 |
Beam’s width, b(x) |
Load/N | Simulation Deflection Value/mm | Simulated Strain Value/με | Theoretical Strain Values of Linear Models/με | Theoretical Strain Values of Nonlinear Models/με |
---|---|---|---|---|
100 | 3.4798 | 1028.7 | 1029.5 | 1028.8 |
200 | 6.9136 | 2038.8 | 2045.4 | 2039.7 |
300 | 10.295 | 3027.7 | 3045.9 | 3026.9 |
400 | 13.566 | 3972.2 | 4013.6 | 3970.4 |
500 | 16.726 | 4872.1 | 4948.5 | 4867.9 |
Deflection Value/mm | Strain Sensor Resistance/Ω | Theoretical Strain Values of Nonlinear Models/με | Theoretical Strain Values of Linear Models/με |
---|---|---|---|
0 | 120.7222 | 0 | 0 |
1.0308 | 120.7817 | 269.45 | 269.46 |
1.2347 | 120.7935 | 322.74 | 322.77 |
1.4356 | 120.8051 | 375.24 | 375.28 |
1.6436 | 120.8167 | 429.60 | 429.66 |
1.8360 | 120.8279 | 479.87 | 479.95 |
2.0369 | 120.8395 | 532.35 | 532.47 |
1.8440 | 120.8282 | 481.96 | 482.04 |
1.6482 | 120.8170 | 430.80 | 430.86 |
1.4489 | 120.8056 | 378.72 | 378.76 |
1.2497 | 120.7940 | 326.66 | 326.67 |
1.0458 | 120.7823 | 273.37 | 273.38 |
Deflection Value/mm | Strain Sensor Resistance/Ω | Theoretical Strain Values of Nonlinear Models/με | Theoretical Strain Values of Linear Models/με |
---|---|---|---|
0 | 120.7223 | 0 | 0 |
1.0407 | 120.7824 | 272.04 | 272.05 |
1.2366 | 120.7937 | 323.24 | 323.26 |
1.4385 | 120.8055 | 376.00 | 376.04 |
1.6391 | 120.8171 | 428.42 | 428.48 |
1.8412 | 120.8287 | 481.23 | 481.31 |
2.0407 | 120.8400 | 533.35 | 533.46 |
1.8388 | 120.8283 | 480.60 | 480.68 |
1.6356 | 120.8166 | 427.51 | 427.57 |
1.4385 | 120.8054 | 376.00 | 376.04 |
1.2420 | 120.7939 | 324.65 | 324.67 |
1.0407 | 120.7824 | 272.04 | 272.05 |
Deflection Value/mm | Strain Sensor Resistance/Ω | Theoretical Strain Values of Nonlinear Models/με | Theoretical Strain Values of Linear Models/με |
---|---|---|---|
0 | 120.7222 | 0 | 0 |
1.0231 | 120.7815 | 267.44 | 267.45 |
1.2327 | 120.7935 | 322.22 | 322.24 |
1.4245 | 120.8049 | 372.34 | 372.38 |
1.6231 | 120.8163 | 424.24 | 424.30 |
1.8211 | 120.8277 | 475.98 | 476.06 |
2.0229 | 120.8393 | 528.70 | 528.81 |
1.8328 | 120.8280 | 479.03 | 479.17 |
1.6403 | 120.8168 | 428.73 | 428.79 |
1.4457 | 120.8055 | 377.88 | 377.92 |
1.2501 | 120.7943 | 326.76 | 326.79 |
1.0461 | 120.7826 | 273.45 | 273.46 |
Sensitivity Coefficient | |
---|---|
The first measurement experiment | 1.823 |
The second measurement experiment | 1.829 |
The third measurement experiment | 1.833 |
Parameter | Component of Uncertainty | Classes | Relative Standard Uncertainty Component/% | Component Synthesis Standard Uncertainty/% |
---|---|---|---|---|
Δε | Thickness of variable section cantilever beam, h | A | 0.031 | 0.161 |
Deflection of variable section cantilever beam, y(x) | A | 0.049 | ||
Distance from deflection measuring point to fixed end, x | A | 0.062 | ||
Model’s theoretical error | A | 0.085 | ||
R | Initial resistance of strain gauge | A | 0.009 | 0.009 |
ΔR | Thickness of variable section cantilever beam | A | 0.085 | 0.085 |
Research Content | Existing Problem | Improvement Project |
---|---|---|
Traceability | The strain can be calculated directly through the load size, but the elastic model parameters in the formula make it impossible to realize the strain’s metrological traceability [27]. | The strain is calculated by the deflection value. The parameters in the formula are displacement measurements, and the strain can be traced by measurement. |
Measuring position | After the free end of the beam is widened, the deflection value is measured at the loading point to calculate the strain. The experimental results are larger than the theoretical analysis [28]. | Through the finite element analysis, the free end widening makes the measured deflection greater than the theoretical value, which is consistent with the measured results in the literature. The deflection is measured in the variable section area. |
Precision | The model ignores the introduction error of the deflection angle [29]. | A nonlinear model is proposed to improve accuracy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Cui, J.; Tang, Y.; Pang, L.; Chen, K.; Zhang, B. Research on a Precision Calibration Model of a Flexible Strain Sensor Based on a Variable Section Cantilever Beam. Sensors 2023, 23, 4778. https://doi.org/10.3390/s23104778
Wang Q, Cui J, Tang Y, Pang L, Chen K, Zhang B. Research on a Precision Calibration Model of a Flexible Strain Sensor Based on a Variable Section Cantilever Beam. Sensors. 2023; 23(10):4778. https://doi.org/10.3390/s23104778
Chicago/Turabian StyleWang, Qi, Jianjun Cui, Yanhong Tang, Liang Pang, Kai Chen, and Baowu Zhang. 2023. "Research on a Precision Calibration Model of a Flexible Strain Sensor Based on a Variable Section Cantilever Beam" Sensors 23, no. 10: 4778. https://doi.org/10.3390/s23104778
APA StyleWang, Q., Cui, J., Tang, Y., Pang, L., Chen, K., & Zhang, B. (2023). Research on a Precision Calibration Model of a Flexible Strain Sensor Based on a Variable Section Cantilever Beam. Sensors, 23(10), 4778. https://doi.org/10.3390/s23104778