LoRaWAN Transmissions in Salt Water for Superficial Marine Sensor Networking: Laboratory and Field Tests
Abstract
:1. Introduction
2. Related Works
3. Theoretical Analysis
3.1. Electromagnetic Propagation
3.2. Complex Relative Permittivity
3.3. Link Budget
4. Experimental Setup
4.1. Laboratory Tests
4.2. Field Tests
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gussen, C.M.; Diniz, P.S.; Campos, M.L.; Martins, W.A.; Costa, F.M.; Gois, J.N. A survey of underwater wireless communication technologies. J. Commun. Inf. Syst. 2016, 31, 242–255. [Google Scholar] [CrossRef]
- Campagnaro, F.; Francescon, R.; Casari, P.; Diamant, R.; Zorzi, M. Multimodal underwater networks: Recent advances and a look ahead. In Proceedings of the 12th International Conference on Underwater Networks & Systems, Halifax, NS, Canada, 6–8 November 2017. [Google Scholar]
- Semtech, LoRa and LoRaWAN: A Technical Overview, Semtech Corporation. 2019. Available online: https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf (accessed on 13 April 2023).
- Di Renzone, G.; Parrino, S.; Peruzzi, G.; Pozzebon, A.; Bertoni, D. LoRaWAN underground to aboveground data transmission performances for different soil compositions. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Di Renzone, G.; Fort, A.; Mugnaini, M.; Parrino, S.; Peruzzi, G.; Pozzebon, A. Interoperability among sub-GHz technologies for metallic assets tracking and monitoring. In Proceedings of the 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, Roma, Italy, 3–5 June 2020; pp. 131–136. [Google Scholar]
- Di Renzone, G.; Fort, A.; Mugnaini, M.; Peruzzi, G.; Pozzebon, A.; Vignoli, V. LoRaWAN transmission system capability assessment in industrial environment under temperature and humidity characterization. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021. [Google Scholar]
- Cappelli, I.; Fort, A.; Mugnaini, M.; Parrino, S.; Pozzebon, A. Underwater to above water LoRa transmission: Technical issues and preliminary tests. In Proceedings of the 24th IMEKO TC4 International Symposium and 22nd International Workshop on ADC and DAC, Palermo, Italy, 14–16 September 2020; pp. 96–101. [Google Scholar]
- Cappelli, I.; Fort, A.; Mugnaini, M.; Parrino, S.; Pozzebon, A. Underwater to above water LoRaWAN networking: Theoretical analysis and field tests. Measurement 2022, 196, 111140. [Google Scholar] [CrossRef]
- Moore, R.K. Radio communication in the sea. IEEE Spectr. 1967, 4, 42–51. [Google Scholar] [CrossRef]
- Gabillard, R.; Degauque, P.; Wait, J. Subsurface electromagnetic telecommunication—A review. IEEE Trans. Commun. Technol. 1971, 19, 1217–1228. [Google Scholar] [CrossRef]
- Siegel, M.; King, R. Electromagnetic propagation between antennas submerged in the ocean. IEEE Trans. Antennas Propag. 1973, 21, 507–513. [Google Scholar] [CrossRef]
- Fattah, S.; Gani, A.; Ahmedy, I.; Idris, M.Y.I.; Targio Hashem, I.A. A survey on underwater wireless sensor networks: Requirements, taxonomy, recent advances, and open research challenges. Sensors 2020, 20, 5393. [Google Scholar] [CrossRef]
- Grosch, A.; Enneking, C.; Greda, L.A.; Tanajewski, D.; Grunwald, G.; Ciećko, A. Theoretical concept for a mobile underwater radio-navigation system using pseudolite buoys. Remote Sens. 2020, 12, 3636. [Google Scholar] [CrossRef]
- Al-Shamma’a, A.I.; Shaw, A.; Saman, S. Propagation of electromagnetic waves at MHz frequencies through seawater. IEEE Trans. Antennas Propag. 2004, 52, 2843–2849. [Google Scholar] [CrossRef]
- Shaw, A.; Al-Shamma’a, A.I.; Wylie, S.R.; Toal, D. Experimental investigations of electromagnetic wave propagation in seawater. In Proceedings of the 2006 European Microwave Conference, Manchester, UK, 10–15 September 2006; pp. 572–575. [Google Scholar]
- Smolyaninov, I.; Balzano, Q.; Davis, C.C.; Young, D. Surface wave based underwater radio communication. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2503–2507. [Google Scholar] [CrossRef]
- Smolyaninov, I.; Balzano, Q.; Young, D. Development of broadband underwater radio communication for application in unmanned underwater vehicles. J. Mar. Sci. Eng. 2020, 8, 370. [Google Scholar] [CrossRef]
- Mendez, H.F.G.; Gac, C.; Le Pennec, F.; Person, C. High performance underwater UHF radio antenna development. In Proceedings of the Oceans 2011 IEEE-Spain, Santander, Spain, 6–9 June 2011. [Google Scholar]
- Shaneyfelt, T.; Joordens, M.A.; Nagothu, k.; Jamshidi, M. RF communication between surface and underwater robotic swarms. In Proceedings of the 2008 World Automation Congress, Waikoloa, HI, USA, 28 September–2 October 2008. [Google Scholar]
- Nagothu, K.; Joordens, M.; Jamshidi, M. Communications for Underwater Robotics Research Platforms. In Proceedings of the 2008 2nd Annual IEEE Systems Conference, Montreal, QC, Canada, 7–10 April 2008. [Google Scholar]
- Lin, K.; Hao, T.; Zheng, W.; He, W. Analysis of LoRa link quality for underwater wireless sensor networks: A semi-empirical study. In Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 10–13 December 2019; pp. 120–122. [Google Scholar]
- Santos, M.O.; Faria, S.M.M.; Fernandcs, T.R. Real Time Underwater Radio Communications in Swimming Training Using Antenna Diversity. In Proceedings of the 2021 Telecoms Conference (ConfTELE), Leiria, Portugal, 11–12 February 2021. [Google Scholar]
- Dala, A.; Arslan, T. Design, implementation, and measurement procedure of underwater and water surface antenna for Lora communication. Sensors 2021, 21, 1337. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.S.; Lee, S.Y.; Kim, J.T.; Yi, J.H. Field implementation of wireless vibration sensing system for monitoring of harbor caisson breakwaters. Int. J. Distrib. Sens. Netw. 2012, 8, 597546. [Google Scholar] [CrossRef]
- Tronci, E.M.; Nagabuko, S.; Hieda, H.; Feng, M.Q. Long-Range Low-Power Multi-Hop Wireless Sensor Network for Monitoring the Vibration Response of Long-Span Bridges. Sensors 2022, 22, 3916. [Google Scholar] [CrossRef]
- Jalalifar, S.; Kashizadeh, A.; Mahmood, I.; Belford, A.; Drake, N.; Razmjou, A.; Asadnia, M. A smart multi-sensor device to detect distress in swimmers. Sensors 2022, 22, 1059. [Google Scholar] [CrossRef]
- Parri, L.; Parrino, S.; Peruzzi, G.; Pozzebon, A. A LoRaWAN network infrastructure for the remote monitoring of offshore sea farms. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020. [Google Scholar]
- Pule, M.; Yahya, A.; Chuma, J. Wireless sensor networks: A survey on monitoring water quality. J. Appl. Res. Technol. 2017, 15, 562–570. [Google Scholar] [CrossRef]
- Lin, Y.P.; Mukhtar, H.; Huang, K.T.; Petway, J.R.; Lin, C.M.; Chou, C.F.; Liao, S.W. Real-time identification of irrigation water pollution sources and pathways with a wireless sensor network and blockchain framework. Sensors 2020, 20, 3634. [Google Scholar] [CrossRef]
- Suzuki, T.; Kato, K.; Makihara, E.; Kobayashi, T.; Kono, H.; Sawai, K.; Kawabata, K.; Takemura, F.; Isomura, N.; Yamashiro, H. Development of underwater monitoring wireless sensor network to support coral reef observation. Int. J. Distrib. Sens. Netw. 2014, 10, 189643. [Google Scholar] [CrossRef]
- Knight, P.; Bird, C.; Sinclair, A.; Higham, J.; Plater, A. Testing an “IoT” tide gauge network for coastal monitoring. IoT 2021, 2, 17–32. [Google Scholar] [CrossRef]
- Sadiku, M.N. Elements of Electromagnetics; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Seybold, J.S. Introduction to RF Propagation; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Somaraju, R.; Trumpf, J. Frequency, temperature and salinity variation of the permittivity of seawater. IEEE Trans. Antennas Propag. 2006, 54, 3441–3448. [Google Scholar] [CrossRef]
- Hunt, K.P.; Niemeier, J.J.; Kruger, A. RF communications in underwater wireless sensor networks. In Proceedings of the 2010 IEEE International Conference on Electro/Information Technology, Normal, IL, USA, 20–22 May 2010. [Google Scholar]
- Hattab, G.; El-Tarhuni, M.; Al-Ali, M.; Joudeh, T.; Qaddoumi, N. An under-water wireless sensor network with realistic radio frequency path loss model. Int. J. Distrib. Sens. Netw. 2013, 9, 508708. [Google Scholar] [CrossRef]
- International Telecommunication Union (ITU). Electrical Characteristics of the Surface of the Earth; International Telecommunication Union: Geneva, Switzerland, 2021. [Google Scholar]
- Peres, C.; Pigeon, M.; Rather, N.; Gawade, D.R.; Buckley, J.; Jafarzadeh, H.; O’Flynn, B. Theoretical models for underwater RFID and the impact of water salinity on the design of wireless systems. Int. J. Adv. Netw. Serv. 2020, 13, 45–59. [Google Scholar]
- Sun, Z.H.I.; Akyildiz, I.F.; Hancke, G.P. Dynamic connectivity in wireless underground sensor networks. IEEE Trans. Wirel. Commun. 2011, 10, 4334–4344. [Google Scholar] [CrossRef]
- Meneghello, F.; Campagnaro, F.; Diamant, R.; Casari, P.; Zorzi, M. Design and evaluation of a low-cost acoustic chamber for underwater networking experiments. In Proceedings of the 11th International Conference on Underwater Networks & Systems, Shanghai, China, 24–26 October 2016. [Google Scholar]
- Ghezzo, M.; Sarretta, A.; Sigovini, M.; Guerzoni, S.; Tagliapietra, D.; Umgiesser, G. Modeling the inter-annual variability of salinity in the lagoon of Venice in relation to the water framework directive typologies. Ocean. Coast. Manag. 2011, 54, 706–719. [Google Scholar] [CrossRef]
- Marine Biology in Chioggia, Parameters of Lagoon. Available online: https://chioggia.biologia.unipd.it/en/the-database/parameters-of-lagoon/ (accessed on 13 April 2023).
- Semtech. SX1272/3/6/7/8: LoRa Modem Designer’s Guide AN1200.13; Semtech Corporation: Camarillo, CA, USA, 2013. [Google Scholar]
- Campagnaro, F.; Toffolo, N.; Pozzebon, A.; Francescon, R.; Barausse, E.; Airoldi, L.; Zorzi, M. A Network Infrastructure for Monitoring Coastal Environments and Study Climate Changes in Marine Systems. In Proceedings of the OCEANS 2022, Hampton Roads, VA, USA, 17–20 October 2022. [Google Scholar]
- Semtech. SX1272/73: Datasheet; Semtech Corporation: Camarillo, CA, USA, 2019. [Google Scholar]
Depth (cm) | Salinity (g/L) | |
---|---|---|
#1 | 12 | 0 |
#2 | 12 | 10 |
#3 | 12 | 20 |
#4 | 6 | 20 |
#5 | 6 | 23.3 |
#6 | 6 | 26.7 |
#7 | 6 | 30 |
#8 | 6 | 33.3 |
#9 | 6 | 36.7 |
#10 | 6 | 40 |
#11 | 6 | 43.3 |
#1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 | #11 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SF 7 | RSSI | (dBm) | |||||||||||
(dB) | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | |||
SNR (dB) | 9.4 | 4.4 | 8.9 | 8.7 | 8.2 | 7 | 4.2 | 1.2 | 2.6 | ||||
1.1 | 2.2 | 1.1 | 1.1 | 0.8 | 0.7 | 0.9 | 1.0 | 0.6 | 0.6 | ||||
PL (%) | 0.5 | 1.0 | 100.0 | 1.0 | 0.5 | 0.5 | 2.5 | 0.5 | 2.0 | 6.0 | 6.5 | ||
SF 8 | RSSI | (dBm) | |||||||||||
(dB) | 2 | 2 | 1 | 1 | 2 | 1 | 3 | 2 | 1 | 1 | |||
SNR (dB) | 10.5 | 5.8 | 10.5 | 9.9 | 9.4 | 7.9 | 2.9 | 2.2 | 2.9 | ||||
1.5 | 1.7 | 1.4 | 1.2 | 1 | 0.9 | 2.8 | 1.4 | 0.6 | 0.8 | ||||
PL (%) | 0.0 | 0.0 | 100.0 | 0.5 | 0.5 | 0.0 | 1.0 | 0.5 | 1.0 | 7.0 | 5.5 | ||
SF 9 | RSSI | (dBm) | |||||||||||
(dB) | 3 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 1 | |||
SNR (dB) | 11.7 | 7.1 | 11.3 | 10.6 | 9.6 | 8.0 | 4.5 | 3.3 | 3.1 | ||||
1.7 | 1.6 | 1.5 | 1.3 | 1.1 | 2.0 | 0.7 | 0.8 | 0.9 | 1 | ||||
PL (%) | 0.5 | 0.0 | 100.0 | 0.0 | 1.5 | 1.0 | 0.5 | 0.0 | 0.5 | 4.5 | 5.5 | ||
SF 10 | RSSI | (dBm) | |||||||||||
(dB) | 3 | 3 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | ||
SNR (dB) | 10.5 | 3.7 | 10.0 | 10.4 | 8.7 | 7.7 | 4.5 | 3.4 | 3.1 | ||||
1.9 | 2.0 | 0.6 | 1.5 | 1.4 | 1.3 | 0.9 | 1.3 | 0.5 | 1.2 | 1.2 | |||
PL (%) | 0.0 | 1.5 | 93.0 | 2.50 | 0.5 | 1.0 | 0.0 | 1.0 | 3.5 | 3.0 | 6.3 | ||
SF 11 | RSSI | (dBm) | |||||||||||
(dB) | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | ||
SNR (dB) | 11.6 | 5.5 | 11.1 | 11.0 | 10.0 | 8.3 | 5.44 | 4.2 | 2.4 | ||||
1.5 | 1.9 | 1.0 | 1.2 | 1.0 | 0.9 | 0.7 | 0.7 | 0.4 | 1.5 | 0.9 | |||
PL (%) | 0.5 | 0.5 | 44.0 | 1.5 | 0.5 | 0.5 | 0.0 | 1.0 | 0.5 | 3.5 | 4.0 | ||
SF 12 | RSSI | (dBm) | |||||||||||
(dB) | 3 | 6 | 2 | 3 | 7 | 2 | 6 | 4 | 4 | 3 | 2 | ||
SNR (dB) | 10.5 | 4.8 | 9.5 | 9.1 | 8.1 | 7.1 | 4.4 | 3.0 | 1.9 | ||||
1.3 | 2.6 | 1.8 | 1.0 | 1.5 | 0.9 | 0.8 | 1.4 | 0.7 | 2.0 | 2.0 | |||
PL (%) | 0.0 | 8.0 | 51.0 | 0.5 | 0.0 | 0.5 | 0.0 | 7.0 | 1.0 | 1.5 | 6.0 |
SF 7 | SF 8 | SF 9 | SF 10 | SF 11 | SF 12 | ||
---|---|---|---|---|---|---|---|
RSSI | (dBm) | ||||||
(dB) | 14 | 17 | 16 | 15 | 17 | 7 | |
SNR (dB) | 2.6 | 5.5 | 5.2 | 2.4 | |||
5.6 | 7.0 | 7.3 | 7.5 | 7.7 | 6.2 | ||
PL (%) | 67 | 67.25 | 59.5 | 61.5 | 82.75 | 96.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozzebon, A.; Cappelli, I.; Campagnaro, F.; Francescon, R.; Zorzi, M. LoRaWAN Transmissions in Salt Water for Superficial Marine Sensor Networking: Laboratory and Field Tests. Sensors 2023, 23, 4726. https://doi.org/10.3390/s23104726
Pozzebon A, Cappelli I, Campagnaro F, Francescon R, Zorzi M. LoRaWAN Transmissions in Salt Water for Superficial Marine Sensor Networking: Laboratory and Field Tests. Sensors. 2023; 23(10):4726. https://doi.org/10.3390/s23104726
Chicago/Turabian StylePozzebon, Alessandro, Irene Cappelli, Filippo Campagnaro, Roberto Francescon, and Michele Zorzi. 2023. "LoRaWAN Transmissions in Salt Water for Superficial Marine Sensor Networking: Laboratory and Field Tests" Sensors 23, no. 10: 4726. https://doi.org/10.3390/s23104726