Highly Selective Gas Sensor Based on Litchi-like g-C3N4/In2O3 for Rapid Detection of H2
Abstract
:1. Introduction
Sensing Materials | Conc. (ppm) | Res. | τres. (s) | τrec. (s) | Ref. |
---|---|---|---|---|---|
WO3-TiO2 | 10000 | 5.62 c | 48 | 5 | [21] |
Ag/ZnO | 300 | 479% b | 175 | 655 | [22] |
Pd/SnO2 | 1000 | 1.2 a | 214 | 51.5 | [23] |
Pt@NiO | 5000 | 4.25 c | 91 | 8 | [24] |
Pd-doped In2O3 | 100 | 3.6 a | 4 | 7 | [25] |
3 wt% g-C3N4/In2O3 | 100 | 180% b | 2 | 2.4 | This work |
2. Experiment
2.1. Synthesis of Peachcore-like Pure In2O3
2.2. Synthesis of Litchi-like g-C3N4/In2O3
2.3. Material Characterization
2.4. Fabrication and Measurement of Gas Sensors
3. Results and Discussion
3.1. Characterization of Material Structure
3.2. Gas-Sensing Properties
3.3. Gas Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, J.-Y.; Chou, Y.-J.; Yin, C.-W.; Lin, W.-C.; Lin, H.-J.; Chen, P.-W.; Tseng, Y.-C. Realization of an H2/CO dual-gas sensor using CoPd magnetic structures. Appl. Phys. Lett. 2018, 113, 182401. [Google Scholar] [CrossRef]
- Constantinoiu, I.; Viespe, C. Development of Pd/TiO2 Porous Layers by Pulsed Laser Deposition for Surface Acoustic Wave H2 Gas Sensor. Nanomaterials 2020, 10, 760. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Bi, M.; Xiao, Q.; Gao, W. Ultrasensitive gas sensor based on Pd/SnS2/SnO2 nanocomposites for rapid detection of H2. Sens. Actuators B Chem. 2022, 359, 131612. [Google Scholar] [CrossRef]
- Kumaresan, M.; Venkatachalam, M.; Saroja, M.; Gowthaman, P. TiO2 nanofibers decorated with monodispersed WO3 heterostruture sensors for high gas sensing performance towards H2 gas. Inorg. Chem. Commun. 2021, 129, 108663. [Google Scholar] [CrossRef]
- Wang, Y.; Bao, L.; Cao, Z.; Li, C.; Li, X.; Liu, F.; Sun, P.; Lu, G. Microwave-assisted hydrothermal synthesis of Pt/SnO2 gas sensor for CO detection. Chin. Chem. Lett. 2020, 31, 2029–2032. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, M.M.; Zhang, D.; Gao, Z. Improving the Performance of Catalytic Combustion Type Methane Gas Sensors Using Nanostructure Elements Doped with Rare Earth Cocatalysts. Sensors 2010, 11, 19–31. [Google Scholar] [CrossRef]
- Cao, Z.; Gao, Q.; Zhou, M.; Li, X.; Wang, Q. LaNiTiO3-SE-based stabilized zirconium oxide mixed potentiometric SO2 gas sensor. Ceram. Int. 2021, 48, 9269–9276. [Google Scholar] [CrossRef]
- Islam, S.; Bhardwaj, A.; Mathur, L.; Kim, I.-H.; Park, J.-Y.; Song, S.-J. Effects of electrolyte variation on ammonia sensing temperature for BiVO4 sensing electrode in mixed potential gas sensor. Sens. Actuators B Chem. 2022, 371, 132504. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, F.; Lin, J.; Lu, G. Gas-sensing properties of In-Sn oxides composites synthesized by hydrothermal method. Sens. Actuators B Chem. 2016, 234, 130–136. [Google Scholar] [CrossRef]
- Guo, S.-Q.; Zhang, X.; Hao, Z.-W.; Gao, G.-D.; Li, G.; Liu, L. In2O3 cubes: Synthesis, characterization and photocatalytic properties. RSC Adv. 2014, 4, 31353–31361. [Google Scholar] [CrossRef]
- Hu, J.; Sun, Y.; Xue, Y.; Zhang, M.; Li, P.; Lian, K.; Zhuiykov, S.; Zhang, W.; Chen, Y. Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sens. Actuators B Chem. 2018, 257, 124–135. [Google Scholar] [CrossRef]
- Liu, W.; Xie, Y.; Chen, T.; Lu, Q.; Ur Rehman, S.; Zhu, L. Rationally designed mesoporous In2O3 nanofibers functionalized Pt catalysts for high-performance acetone gas sensors. Sens. Actuators B Chem. 2019, 298, 126871. [Google Scholar] [CrossRef]
- Zhang, K.; Qin, S.; Tang, P.; Feng, Y.; Li, D. Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In2O3 heterostructures. J. Hazard. Mater. 2020, 391, 122191. [Google Scholar] [CrossRef] [PubMed]
- Hussain, C.M.; Thomas, S. Handbook of Polymer and Ceramic Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Achary, L.S.K.; Kumar, A.; Barik, B.; Nayak, P.S.; Tripathy, N.; Kar, J.P.; Dash, P. Reduced graphene oxide-CuFe2O4 nanocomposite: A highly sensitive room temperature NH3 gas sensor. Sens. Actuators B Chem. 2018, 272, 100–109. [Google Scholar] [CrossRef]
- Hou, M.; Gao, J.; Yang, L.; Guo, S.; Hu, T.; Li, Y. Room temperature gas sensing under UV light irradiation for Ti3C2Tx MXene derived lamellar TiO2-C/g-C3N4 composites. Appl. Surf. Sci. 2021, 535, 147666. [Google Scholar] [CrossRef]
- Maji, B.; Achary, L.S.K.; Barik, B.; Jyotsna Sahoo, S.; Mohanty, A.; Dash, P. MnCo2O4 decorated (2D/2D) rGO/g-C3N4-based Non-Enzymatic sensor for highly selective and sensitive detection of Chlorpyrifos in water and food samples. J. Electroanal. Chem. 2022, 909, 116115. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Pan, Q.; Pan, K.; Zhang, G. Metal-organic framework (MOF) derived In2O3 and g-C3N4 composite for superior NOx gas-sensing performance at room temperature. Sens. Actuators B Chem. 2021, 352, 131001. [Google Scholar] [CrossRef]
- Sun, D.; Wang, W.; Zhang, N.; Liu, C.; Li, X.; Zhou, J.; Ruan, S. G-C3N4/In2O3 composite for effective formaldehyde detection. Sens. Actuators B Chem. 2022, 358, 131414. [Google Scholar] [CrossRef]
- Ullah, M.; Lv, H.; Liu, Z.; Bai, X.; Chen, J.; Zhang, Y.; Wang, J.; Sun, B.; Li, L.; Shi, K. Rational fabrication of a g-C3N4/NiO hierarchical nanocomposite with a large surface area for the effective detection of NO2 gas at room temperature. Appl. Surf. Sci. 2021, 550, 149368. [Google Scholar] [CrossRef]
- Li, H.; Wu, C.-H.; Liu, Y.-C.; Yuan, S.-H.; Chiang, Z.-X.; Zhang, S.; Wu, R.-J. Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor. Sens. Actuators B Chem. 2021, 341, 130035. [Google Scholar] [CrossRef]
- Agarwal, S.; Kumar, S.; Agrawal, H.; Moinuddin, M.G.; Kumar, M.; Sharma, S.K.; Awasthi, K. An efficient hydrogen gas sensor based on hierarchical Ag/ZnO hollow microstructures. Sens. Actuators B Chem. 2021, 346, 130510. [Google Scholar] [CrossRef]
- Kadhim, I.H.; Abu Hassan, H.; Abdullah, Q.N. Hydrogen Gas Sensor Based on Nanocrystalline SnO2 Thin Film Grown on Bare Si Substrates. Nano-Micro Lett. 2016, 8, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-H.; Zhu, Z.; Chang, H.-M.; Jiang, Z.-X.; Hsieh, C.-Y.; Wu, R.-J. Pt@NiO core–shell nanostructure for a hydrogen gas sensor. J. Alloys Compd. 2020, 814, 151815. [Google Scholar] [CrossRef]
- Chen, L.; He, X.; Liang, Y.; Sun, Y.; Zhao, Z.; Hu, J. Synthesis and gas sensing properties of palladium-doped indium oxide microstructures for enhanced hydrogen detection. J. Mater. Sci. Mater. Electron. 2016, 27, 11331–11338. [Google Scholar] [CrossRef]
- Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397–10401. [Google Scholar] [CrossRef]
- Akhtar, A.; Jiao, C.; Chu, X.; Liang, S.; Dong, Y.; He, L. Acetone sensing properties of the g–C3N4–CuO nanocomposites prepared by hydrothermal method. Mater. Chem. Phys. 2021, 265, 124375. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Chu, X.; Liang, S.; Kong, L. Preparation of g–C3N4–SnO2 composites for application as acetic acid sensor. J. Alloys Compd. 2020, 832, 153355. [Google Scholar] [CrossRef]
- Li, S.; Xie, L.; He, M.; Hu, X.; Luo, G.; Chen, C.; Zhu, Z. Metal-Organic frameworks-derived bamboo-like CuO/In2O3 Heterostructure for high-performance H2S gas sensor with Low operating temperature. Sens. Actuators B Chem. 2020, 310, 127828. [Google Scholar] [CrossRef]
- Ma, J.; Fan, H.; Zheng, X.; Wang, H.; Zhao, N.; Zhang, M.; Yadav, A.K.; Wang, W.; Dong, W.; Wang, S. Facile metal-organic frameworks-templated fabrication of hollow indium oxide microstructures for chlorine detection at low temperature. J. Hazard. Mater. 2020, 387, 122017. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Reddeppa, M.; Chougule, S.; Bak, N.-H.; Nam, D.-J.; Jung, N.; Cho, H.D.; Kim, S.-G.; Kim, M.-D. High performance langasite based SAW NO2 gas sensor using 2D g-C3N4@TiO2 hybrid nanocomposite. J. Hazard. Mater. 2022, 427, 128174. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, C.; Jiang, F.; Liu, J.; Liu, G.; Ma, X.; Liu, P.; Huang, R.; Xu, J.; Wang, L. Flexible fiber-shaped hydrogen gas sensor via coupling palladium with conductive polymer gel fiber. J. Hazard. Mater. 2021, 411, 125008. [Google Scholar] [CrossRef]
- Han, D.; Zhai, L.; Gu, F.; Wang, Z. Highly sensitive NO2 gas sensor of ppb-level detection based on In2O3 nanobricks at low temperature. Sens. Actuators B Chem. 2018, 262, 655–663. [Google Scholar] [CrossRef]
- Cao, S.W.; Liu, X.F.; Yuan, Y.P.; Zhang, Z.Y.; Liao, Y.S.; Fang, J.; Loo, S.C.J.; Sum, T.C.; Xue, C. Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts. Appl. Catal. B—Environ. 2014, 147, 940–946. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Sun, G.; Luo, N.; Zhang, B.; Zhang, Z. Synthesis of a Flower-Like g-C3N4/ZnO Hierarchical Structure with Improved CH4 Sensing Properties. Nanomaterials 2019, 9, 724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, J.M.; Akbar, S.A.; Morris, P.A. Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: A review. Sens. Actuators B Chem. 2019, 286, 624–640. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Wang, T.; Li, X.; Fu, Y.; Zhao, G.; Xu, X. g-C3N4 templated synthesis of 3DOM SnO2/CN enriched with oxygen vacancies for superior NO2 gas sensing. Appl. Surf. Sci. 2022, 604, 154618. [Google Scholar] [CrossRef]
- Xie, F.; Li, W.; Zhang, Q.; Zhang, S. Highly Sensitive and Selective CO/NO/H2/NO2 Gas Sensors Using Noble Metal (Pt, Pd) Decorated MOx (M = Sn, W) Combined With SiO2 Membrane. IEEE Sens. J. 2019, 19, 10674–10679. [Google Scholar] [CrossRef]
- Guo, W.W.; Huang, L.L.; Zhang, J.; He, Y.Z.; Zeng, W. Ni-doped SnO2/g-C3N4 nanocomposite with enhanced gas sensing performance for the eff;ective detection of acetone in diabetes diagnosis. Sens. Actuator B Chem. 2021, 334, 11. [Google Scholar] [CrossRef]
- Patrick, D.S.; Govind, A.; Bharathi, P.; Mohan, M.K.; Harish, S.; Archana, J.; Navaneethan, M. Hierarchical ZnO/g-C3N4 nanocomposites for enhanced NO2 gas sensing applications. Appl. Surf. Sci. 2023, 609, 155337. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, X.; Pan, Q.; Liu, T.; Wang, Q. Highly Selective Gas Sensor Based on Litchi-like g-C3N4/In2O3 for Rapid Detection of H2. Sensors 2023, 23, 148. https://doi.org/10.3390/s23010148
Zhang J, Li X, Pan Q, Liu T, Wang Q. Highly Selective Gas Sensor Based on Litchi-like g-C3N4/In2O3 for Rapid Detection of H2. Sensors. 2023; 23(1):148. https://doi.org/10.3390/s23010148
Chicago/Turabian StyleZhang, Ji, Xu Li, Qinhe Pan, Tong Liu, and Qingji Wang. 2023. "Highly Selective Gas Sensor Based on Litchi-like g-C3N4/In2O3 for Rapid Detection of H2" Sensors 23, no. 1: 148. https://doi.org/10.3390/s23010148
APA StyleZhang, J., Li, X., Pan, Q., Liu, T., & Wang, Q. (2023). Highly Selective Gas Sensor Based on Litchi-like g-C3N4/In2O3 for Rapid Detection of H2. Sensors, 23(1), 148. https://doi.org/10.3390/s23010148