Concordance of Computed Tomography Regional Body Composition Analysis Using a Fully Automated Open-Source Neural Network versus a Reference Semi-Automated Program with Manual Correction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Population
2.2. SliceOmatic Plus ABACS Analysis (Reference Method)
2.3. AutoMATiCA Analysis (Test Method)
2.4. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Body Composition Comparisons
3.3. Correlation and Agreement Comparisons
3.4. Agreement Comparisons by Subgroups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, L.; Birdsell, L.; Macdonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef]
- Gomez-Perez, S.L.; Chaudhry, V.; Mar, W.; Patel, B.; Fantuzzi, G.; Freels, S.; Braunschweig, C.A. Impact of abdominal adipose depots and race on risk for colorectal cancer: A case-control study. Nutr. Cancer 2017, 69, 573–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braunschweig, C.A.; Sheean, P.M.; Peterson, S.J.; Gomez Perez, S.; Freels, S.; Lateef, O.; Gurka, D.; Fantuzzi, G. Intensive Nutrition in Acute Lung Injury: A Clinical Trial (INTACT). JPEN J. Parenter. Enter. Nutr. 2014, 39, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.J.; Braunschweig, C.A. Prevalence of Sarcopenia and Associated Outcomes in the Clinical Setting. Nutr. Clin. Pract. 2016, 31, 40–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, M.; Caruso, D.; Tuccinardi, D.; Risi, R.; Zerunian, M.; Polici, M.; Pucciarelli, F.; Tarallo, M.; Strigari, L.; Manfrini, S.; et al. Visceral fat shows the strongest association with the need of intensive care in patients with COVID-19. Metabolism 2020, 111, 154319. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, P.; Falcone, C.; Romano, L.; Macheda, S.; Correale, P.; Arciello, P.; Polimeni, N.; Lorenzo, A. Body Composition Findings by Computed Tomography in SARS-CoV-2 Patients: Increased Risk of Muscle Wasting in Obesity. Int. J. Mol. Sci. 2020, 21, 4670. [Google Scholar] [CrossRef] [PubMed]
- Earthman, C.P. Body Composition Tools for Assessment of Adult Malnutrition at the Bedside: A Tutorial on Research Considerations and Clinical Applications. JPEN J. Parenter. Enter. Nutr. 2015, 39, 787–822. [Google Scholar] [CrossRef] [PubMed]
- Paris, M.T.; Tandon, P.; Heyland, D.K.; Furberg, H.; Premji, T.; Low, G.; Mourtzakis, M. Automated body composition analysis of clinically acquired computed tomography scans using neural networks. Clin. Nutr. 2020, 39, 3049–3055. [Google Scholar] [CrossRef] [PubMed]
- Zou, K.H.; Warfield, S.K.; Bharatha, A.; Tempany, C.M.C.; Kaus, M.R.; Haker, S.J.; Wells, W.M., 3rd; Jolesz, F.A.; Kikinis, R. Statistical validation of image segmentation quality based on a spatial overlap index. Acad. Radiol. 2004, 11, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Mourtzakis, M.; Prado, C.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Hedayat, A.S.; Sinha, B.; Yang, M. Statistical Methods in Assessing Agreement. J. Am. Stat. Assoc. 2002, 97, 257–270. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Borrelli, P.; Kaboteh, R.; Enqvist, O.; Ulén, J.; Trägårdh, E.; Kjölhede, H.; Edenbrandt, L. Artificial intelligence-aided CT segmentation for body composition analysis: A validation study. Eur. Radiol. Exp. 2021, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- Ackermans, L.; Volmer, L.; Wee, L.; Brecheisen, R.; Sánchez-González, P.; Seiffert, A.P.; Gómez, E.J.; Dekker, A.; Ten Bosch, J.A.; Damink, S.M.W.O.; et al. Deep Learning Automated Segmentation for Muscle and Adipose Tissue from Abdominal Computed Tomography in Polytrauma Patients. Sensors 2021, 21, 2083. [Google Scholar] [CrossRef]
- Chandarana, H.; Pisuchpen, N.; Krieger, R.; Dane, B.; Mikheev, A.; Feng, Y.; Kambadakone, A.; Rusinek, H. Association of body composition parameters measured on CT with risk of hospitalization in patients with COVID-19. Eur. J. Radiol. 2021, 145, 110031. [Google Scholar] [CrossRef]
Variable | Levels | N (%) |
---|---|---|
Age Group | ||
Young: <40 years | 20 (4.76) | |
Middle: 40–65 years | 263 (62.62) | |
Older: >65 years | 135 (32.14) | |
Unknown | 2 (0.48) | |
BMI Group | ||
Low/Normal: <25.0 kg/m2 | 127 (30.24) | |
Overweight: 25–29.9 kg/m2 | 149 (35.48) | |
Obese: >30.0 kg/m2 | 142 (33.81) | |
Missing | 2 (0.48) | |
Sex | ||
Female | 231 (55.00) | |
Male | 187 (44.52) | |
Unknown | 2 (0.48) | |
Race/Ethnicity | ||
Black | 223 (53.10) | |
White | 169 (40.24) | |
Other | 28 (6.67) | |
Diagnosis | ||
Healthy Adults | 128 (30.48) | |
Colorectal Cancer | 127 (30.24) | |
Metastatic Breast Cancer | 92 (21.90) | |
Critical Illness | 37 (8.81) | |
COVID-19 | 22 (5.24) | |
Early-stage Breast Cancer | 14 (3.33) |
Body Composition Parameter | Automated Program—AutoMATiCA (Test Method) | Human-Based Sliceomatic (Reference Method) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean | Std Dev | Median | Lower Quartile | Upper Quartile | Min. | Max. | N | Mean | Std Dev | Median | Lower Quartile | Upper Quartile | Min. | Max. | |
Muscle area | 420 | 143.19 | 36.00 | 137.39 | 114.50 | 169.24 | 56.57 | 262.79 | 420 | 139.34 | 37.91 | 131.60 | 109.60 | 165.05 | 54.02 | 295.10 |
VAT area | 420 | 122.08 | 95.75 | 96.28 | 46.90 | 171.65 | 0.56 | 474.85 | 420 | 117.82 | 93.56 | 89.98 | 46.38 | 167.40 | 0.03 | 468.20 |
SAT area | 420 | 226.32 | 142.55 | 192.24 | 124.80 | 299.91 | 2.56 | 857.65 | 420 | 215.41 | 140.76 | 184.10 | 118.40 | 282.70 | −84.15 | 841.30 |
IMAT area | 420 | 12.34 | 9.12 | 9.85 | 6.09 | 15.64 | 0.10 | 51.45 | 398 | 15.61 | 11.58 | 12.11 | 7.26 | 20.19 | 0.01 | 73.44 |
Muscle density | 420 | 35.52 | 10.83 | 36.21 | 28.36 | 43.77 | 3.63 | 61.10 | 383 | 37.43 | 16.34 | 37.29 | 29.82 | 44.73 | −29 | 254.10 |
VAT density | 420 | −86.95 | 9.83 | −88.02 | −93.51 | −79.76 | −111.56 | −61 | 383 | −87.1 | 13.18 | −88.92 | −94.26 | −81.28 | −150 | 7.59 |
SAT density | 420 | −93 | 14.43 | −96.64 | −102.62 | −87.05 | −118.28 | −44.23 | 383 | −94.76 | 16.21 | −98.42 | −104.2 | −90.03 | −160 | −4.93 |
IMAT density | 420 | −58.75 | 6.32 | −58.45 | −62.84 | −54.5 | −79.38 | −36.16 | 361 | −59.23 | 8.03 | −58.8 | −62.88 | −54.81 | −142 | −31.67 |
Comparisons | N | Lin’s Concordance Correlation Coefficient | Intraclass Correlation | Spearman Correlation Coefficients | Dice Similarity Coefficient (DSC) | Bland-Altman | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Automatic Program–AutoMATiCA | Human-Based Sliceomatic | Bland-Altman Plots (Difference between AutoMATiCA and Human-Based Technique) | Proportional Bias | |||||||||||
(Test Method– Autosegmentation) | (Reference Method) | Mean | SD | Mean | SD | Lower LOA | Upper LOA | Pearson Correlation Coefficients | p-Value | Performance | ||||
Muscle CSA | SM | 420 | 0.89 | 0.89 | 0.9 | 0.97 | 0.06 | 3.85 | 17.27 | −29.99 | 37.7 | −0.11 | 0.02 | Proportional bias |
VAT CSA | VAT | 420 | 0.89 | 0.89 | 0.9 | 0.92 | 0.17 | 4.26 | 45.26 | −84.45 | 92.97 | 0.05 | 0.31 | No Proportional bias |
SAT CSA | SAT | 420 | 0.92 | 0.92 | 0.91 | 0.93 | 0.14 | 10.91 | 55.56 | −97.98 | 119.79 | 0.03 | 0.5 | No Proportional bias |
IMAT CSA | IMAT | 398 | 0.75 | 0.76 | 0.83 | 0.83 | 0.15 | −3.65 | 7.3 | −17.95 | 10.65 | −0.42 | <0.00 | Proportional bias |
Muscle HU | SMHU | 383 | 0.54 | 0.56 | 0.96 | 0.98 | 0.06 | −0.63 | 12.8 | −25.71 | 24.45 | −0.54 | <0.00 | Proportional bias |
VAT HU | VATHU | 383 | 0.73 | 0.75 | 0.97 | 0.99 | 0.07 | −0.53 | 8.15 | −16.5 | 15.45 | −0.48 | <0.00 | Proportional bias |
SAT HU | SATHU | 383 | 0.8 | 0.9 | 0.95 | 0.98 | 0.07 | 0.45 | 6.98 | −13.23 | 14.13 | −0.49 | <0.00 | Proportional bias |
IMAT HU | IMATHU | 361 | 0.64 | 0.67 | 0.9 | 0.98 | 0.03 | 0.26 | 5.84 | −11.19 | 11.72 | −0.37 | <0.00 | Proportional bias |
Body Composition Parameters | ALL (n = 420) | Healthy Adults (n = 128) | Colorectal Cancer (n = 127) | Metastatic Breast Cancer (n = 92) | Critical Illness (n = 37) | COVID-19 (n = 19) | Breast Cancer (n = 14) | p-Value * | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean | SD | N | Mean | SD | N | Mean | SD | N | Mean | SD | N | Mean | SD | N | Mean | SD | |||
Muscle CSA | 0.97 | 128 | 0.99 | 0.04 | 127 | 0.99 | 0.02 | 92 | 0.97 | 0.03 | 37 | 0.87 | 0.12 | 22 | 0.96 | 0.06 | 14 | 0.99 | 0.01 | <0.00 |
VAT CSA | 0.92 | 128 | 0.95 | 0.12 | 127 | 0.95 | 0.11 | 92 | 0.92 | 0.15 | 37 | 0.65 | 0.33 | 22 | 0.99 | 0.02 | 14 | 0.96 | 0.05 | <0.00 |
SAT CSA | 0.93 | 128 | 0.95 | 0.1 | 127 | 0.95 | 0.07 | 92 | 0.96 | 0.07 | 37 | 0.69 | 0.28 | 22 | 0.99 | 0.01 | 14 | 0.98 | 0.01 | <0.00 |
IMAT CSA | 0.83 | 128 | 0.8 | 0.1 | 127 | 0.84 | 0.1 | 92 | 0.91 | 0.13 | 37 | 0.67 | 0.26 | 0 | 14 | 0.91 | 0.08 | <0.00 | ||
Muscle HU | 0.98 | 128 | 0.99 | 0.03 | 127 | 0.99 | 0.02 | 92 | 0.96 | 0.11 | 0 | 22 | 0.94 | 0.1 | 14 | 0.99 | 0 | 0.01 | ||
VAT HU | 0.99 | 128 | 0.99 | 0.05 | 127 | 0.99 | 0.02 | 92 | 0.97 | 0.12 | 0 | 22 | 1 | 0.01 | 14 | 1 | 0 | <0.00 | ||
SAT HU | 0.98 | 128 | 0.97 | 0.11 | 127 | 0.99 | 0.03 | 92 | 0.98 | 0.04 | 0 | 22 | 1 | 0 | 14 | 1 | 0 | <0.00 | ||
IMAT HU | 0.98 | 128 | 0.98 | 0.03 | 127 | 0.99 | 0.02 | 92 | 0.98 | 0.04 | 0 | 0 | 14 | 0.99 | 0.01 | 0.43 |
ALL (n = 418) | Female–Black (n = 112) | Female–Other (n = 16) | Female–White (n = 103) | Male–Black (n = 111) | Male–Other (n = 10) | Male–White (n = 66) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean | SD | N | Mean | SD | N | Mean | SD | N | Mean | SD | N | Mean | SD | N | Mean | SD | p-Value * | ||
Muscle CSA | 0.97 | 112 | 0.97 | 0.05 | 16.00 | 0.95 | 0.10 | 103.00 | 0.97 | 0.05 | 111.00 | 0.98 | 0.04 | 10.00 | 0.93 | 0.11 | 66.00 | 0.98 | 0.06 | <0.00 |
VAT CSA | 0.92 | 112 | 0.91 | 0.19 | 16.00 | 0.93 | 0.20 | 103.00 | 0.91 | 0.18 | 111.00 | 0.92 | 0.16 | 10.00 | 0.87 | 0.23 | 66.00 | 0.95 | 0.13 | 0.04 |
SAT CSA | 0.93 | 112 | 0.93 | 0.15 | 16.00 | 0.90 | 0.21 | 103.00 | 0.95 | 0.10 | 111.00 | 0.93 | 0.12 | 10.00 | 0.86 | 0.29 | 66.00 | 0.94 | 0.13 | 0.00 |
IMAT CSA | 0.83 | 103 | 0.83 | 0.15 | 14.00 | 0.85 | 0.20 | 103.00 | 0.87 | 0.15 | 109.00 | 0.81 | 0.13 | 4.00 | 0.80 | 0.15 | 63.00 | 0.81 | 0.14 | <0.00 |
Muscle HU | 0.98 | 102 | 0.98 | 0.05 | 15.00 | 0.91 | 0.19 | 96.00 | 0.98 | 0.07 | 104.00 | 0.99 | 0.02 | 6.00 | 0.99 | 0.02 | 58.00 | 0.98 | 0.03 | 0.88 |
VAT HU | 0.99 | 102 | 0.99 | 0.03 | 15.00 | 0.94 | 0.21 | 96.00 | 0.98 | 0.09 | 104.00 | 0.99 | 0.04 | 6.00 | 0.99 | 0.01 | 58.00 | 0.99 | 0.03 | 0.01 |
SAT HU | 0.98 | 102 | 0.98 | 0.09 | 15.00 | 0.98 | 0.07 | 96.00 | 0.99 | 0.03 | 104.00 | 0.97 | 0.08 | 6.00 | 1.00 | 0.01 | 58.00 | 0.98 | 0.04 | <0.00 |
IMAT HU | 0.98 | 93 | 0.99 | 0.01 | 13.00 | 0.97 | 0.07 | 96.00 | 0.98 | 0.03 | 102.00 | 0.98 | 0.02 | 0.00 | 55.00 | 0.98 | 0.05 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez-Perez, S.L.; Zhang, Y.; Byrne, C.; Wakefield, C.; Geesey, T.; Sclamberg, J.; Peterson, S. Concordance of Computed Tomography Regional Body Composition Analysis Using a Fully Automated Open-Source Neural Network versus a Reference Semi-Automated Program with Manual Correction. Sensors 2022, 22, 3357. https://doi.org/10.3390/s22093357
Gomez-Perez SL, Zhang Y, Byrne C, Wakefield C, Geesey T, Sclamberg J, Peterson S. Concordance of Computed Tomography Regional Body Composition Analysis Using a Fully Automated Open-Source Neural Network versus a Reference Semi-Automated Program with Manual Correction. Sensors. 2022; 22(9):3357. https://doi.org/10.3390/s22093357
Chicago/Turabian StyleGomez-Perez, Sandra L., Yanyu Zhang, Cecily Byrne, Connor Wakefield, Thomas Geesey, Joy Sclamberg, and Sarah Peterson. 2022. "Concordance of Computed Tomography Regional Body Composition Analysis Using a Fully Automated Open-Source Neural Network versus a Reference Semi-Automated Program with Manual Correction" Sensors 22, no. 9: 3357. https://doi.org/10.3390/s22093357
APA StyleGomez-Perez, S. L., Zhang, Y., Byrne, C., Wakefield, C., Geesey, T., Sclamberg, J., & Peterson, S. (2022). Concordance of Computed Tomography Regional Body Composition Analysis Using a Fully Automated Open-Source Neural Network versus a Reference Semi-Automated Program with Manual Correction. Sensors, 22(9), 3357. https://doi.org/10.3390/s22093357